Content deleted Content added
m Make the symbol consistent |
|||
(39 intermediate revisions by 14 users not shown) | |||
Line 1:
{{Short description|Functions used to evaluate optimization algorithms}}
In applied mathematics, '''test functions''', known as '''artificial landscapes''', are useful to evaluate characteristics of optimization algorithms, such as
Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective [[Pareto front|Pareto fronts]] for [[multi-objective optimization]] problems (MOP) are given.
Line 17 ⟶ 12:
==Test functions for single-objective optimization==
{| class="sortable wikitable"
! Name
|-▼
! Plot
! Formula
! Global minimum
! Search ___domain
|-
| [[Rastrigin function]]
<math>\text{where: } A=10</math>
|-
| [[Ackley function]]
<math>-\exp\left[0.5\left(\cos 2\pi x + \cos 2\pi y \right)\right] + e + 20</math>
|-
| Sphere function
|-
| [[Rosenbrock function]]
\begin{cases}
n=2 & \rightarrow \quad f(1,1) = 0, \\
Line 51 ⟶ 49:
\end{cases}
</math>
|-
| [[Beale function]]
<math>+ \left(2.625 - x+ xy^{3}\right)^{2}</math>
|-
| [[Goldstein–Price function]]
<math>\left[30+\left(2x-3y\right)^{2}\left(18-32x+12x^{2}+48y-36xy+27y^{2}\right)\right]</math>
|-
| [[Booth function]]
|-
| Bukin function N.6
|-
| [[Matyas function]]
|-
| Lévi function N.13
<math>+\left(y-1\right)^{2}\left(1+\sin^{2} 2\pi y\right)</math>
▲|-
| <math>f(\boldsymbol{x})= 1+ \frac {1}{4000} \sum _{i=1}^n x_i^2 -\prod _{i=1}^n P_i(x_i)</math>, where <math>P_i(x_i)=\cos \left( \frac {x_i}{\sqrt {i}} \right)</math>
|-
| [[Himmelblau's function]]
\begin{cases}
f\left(3.0, 2.0\right) & = 0.0 \\
Line 103 ⟶ 107:
\end{cases}
</math>
|-
| Three-hump camel function
|
|-
| [[Easom function]]
|-
| Cross-in-tray function
\begin{cases}
f\left(1.34941, -1.34941\right) & = -2.06261 \\
Line 128 ⟶ 132:
\end{cases}
</math>
|
|-
| [[Eggholder function]]<ref name="Whitley Rana Dzubera Mathias 1996 pp. 245–276">{{cite journal | last1=Whitley | first1=Darrell | last2=Rana | first2=Soraya | last3=Dzubera | first3=John | last4=Mathias | first4=Keith E. | title=Evaluating evolutionary algorithms | journal=Artificial Intelligence | publisher=Elsevier BV | volume=85 | issue=1–2 | year=1996 | issn=0004-3702 | doi=10.1016/0004-3702(95)00124-7 | pages=264| doi-access=free }}</ref><ref name="vanaret2015hybridation">Vanaret C. (2015) [https://www.researchgate.net/publication/337947149_Hybridization_of_interval_methods_and_evolutionary_algorithms_for_solving_difficult_optimization_problems Hybridization of interval methods and evolutionary algorithms for solving difficult optimization problems.] PhD thesis. Ecole Nationale de l'Aviation Civile. Institut National Polytechnique de Toulouse, France.</ref>
|-
| [[Hölder table function]]
\begin{cases}
f\left(8.05502, 9.66459\right) & = -19.2085 \\
Line 147 ⟶ 151:
\end{cases}
</math>
|-
| [[McCormick function]]
|-
| Schaffer function N. 2
|-
| Schaffer function N. 4
\begin{cases}
f\left(0,1.25313\right) & = 0.292579 \\
Line 172 ⟶ 176:
\end{cases}
</math>
|-
| [[Styblinski–Tang function]]
|-▼
| [[Image:Shekel_2D.jpg|200px|A Shekel function in 2 dimensions and with 10 maxima]]
| <math>
f(\boldsymbol{x}) = \sum_{i = 1}^{m} \; \left( c_{i} + \sum\limits_{j = 1}^{n} (x_{j} - a_{ji})^2 \right)^{-1}
</math>
| <math>-\infty \le x_{i} \le \infty</math>, <math>1 \le i \le n</math>
|}
Line 186 ⟶ 198:
|-
! Name !! Plot !! Formula !! Global minimum !! Search ___domain
▲|-
|| <math>f(x,y) = (1-x)^2 + 100(y-x^2)^2</math>,▼
▲|| <math>f(1.0,1.0) = 0</math>
▲|| <math>-1.5\le x \le 1.5</math>, <math>-0.5\le y \le 2.5</math>
|-
| Rosenbrock function constrained to a disk<ref>{{Cite web|url=https://www.mathworks.com/help/optim/ug/example-nonlinear-constrained-minimization.html?requestedDomain=www.mathworks.com|title=Solve a Constrained Nonlinear Problem - MATLAB & Simulink|website=www.mathworks.com|access-date=2017-08-29}}</ref>
Line 219 ⟶ 223:
|-
| '''Keane's bump function'''{{anchor|Keane's bump function}}<ref>{{cite journal |last1=Mishra |first1=Sudhanshu |title=Minimization of Keane’s Bump Function by the Repulsive Particle Swarm and the Differential Evolution Methods |date=5 May 2007 |url=https://econpapers.repec.org/paper/pramprapa/3098.htm |journal=MPRA Paper|publisher=University Library of Munich, Germany}}</ref>
|| [[File:
|| <math>f(\boldsymbol{x
subjected to: <math> 0.75 -
|| <math>
▲|-
▲|| [[File:Simionescu contour.svg|200px|Simionescu function]]
|}
Line 260 ⟶ 256:
|| <math>0\le x \le 5</math>, <math>0\le y \le 3</math>
|-
| [[Chankong and Haimes function]]:<ref>{{cite book |last1=Chankong |first1=Vira |last2=Haimes |first2=Yacov Y. |title=Multiobjective decision making. Theory and methodology. |isbn=0-444-00710-5|year=1983 |publisher=North Holland }}</ref>
|| [[File:Chakong and Haimes function.pdf|200px|Chakong and Haimes function]]
|| <math>\text{Minimize} =
Line 362 ⟶ 358:
||<math>-\pi\le x,y \le \pi</math>
|-
| Zitzler–Deb–Thiele's function N. 1:<ref name="Debetal2002testpr">{{cite book |last1=Deb |first1=Kalyan |last2=Thiele |first2=L. |last3=Laumanns |first3=Marco |last4=Zitzler |first4=Eckart
|| [[File:Zitzler-Deb-Thiele's function 1.pdf|200px|Zitzler-Deb-Thiele's function N.1]]
|| <math>\text{Minimize} =
Line 448 ⟶ 444:
|| <math>0\le x_{1},x_{2},x_{6} \le 10</math>, <math>1\le x_{3},x_{5} \le 5</math>, <math>0\le x_{4} \le 6</math>.
|-
| CTP1 function (2 variables):<ref name="Deb:2002"/><ref name="Jimenezetal2002">{{cite
|| [[File:CTP1 function (2 variables).pdf|200px|CTP1 function (2 variables).<ref name="Deb:2002" />]]
|| <math>\text{Minimize} =
Line 492 ⟶ 488:
||<math>-3\le x,y \le 3</math>.
|}
▲* [[Ackley function]]
▲* [[Shekel function]]
==References==
<references/>▼
== External links ==
▲<references/>
* [https://github.com/nathanrooy/landscapes landscapes]
{{DEFAULTSORT:Test functions for optimization}}
[[Category:Constraint programming]]
[[Category:Convex optimization]]
[[Category:
[[Category:Test items]]
|