Content deleted Content added
m WP:ADOPTYPO boolean -> Boolean |
Citation bot (talk | contribs) Removed URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 2:
{{Evolutionary algorithms}}
==Chromosome design==
Line 44:
=== Chromosomes with real-valued or integer genes ===
For the processing of tasks with real-valued or mixed-integer decision variables, EAs such as the [[evolution strategy]]<ref name=":3">{{Cite book |last=Schwefel |first=Hans-Paul |url=https://www.researchgate.net/publication/
=== Chromosomes for permutations ===
[[Combinatorial optimization|Combinatorial problems]] are mainly concerned with finding an optimal sequence of a set of elementary items. As an example, consider the problem of the [[Travelling salesman problem|traveling salesman]] who wants to visit a given number of cities exactly once on the shortest possible tour. The simplest and most obvious mapping onto a chromosome is to number the cities consecutively, to interpret a resulting sequence as [[permutation]] and to store it directly in a chromosome, where one gene corresponds to the ordinal number of a city.<ref>{{Cite book |last1=Eiben |first1=A.E. |url=https://link.springer.com/10.1007/978-3-662-44874-8 |title=Introduction to Evolutionary Computing |last2=Smith |first2=J.E. |date=2015 |publisher=Springer |isbn=978-3-662-44873-1 |series=Natural Computing Series |___location=Berlin, Heidelberg |pages=67–74 |language=en |chapter=Permutation Representation |doi=10.1007/978-3-662-44874-8|s2cid=20912932 }}</ref> Then, however, the [[Genetic operator|variation operators]] may only change the gene order and not remove or duplicate any genes.<ref name=":2">{{Cite journal |last1=Larrañaga |first1=P. |last2=Kuijpers |first2=C.M.H. |last3=Murga |first3=R.H. |last4=Inza |first4=I. |last5=Dizdarevic |first5=S. |date=1999 |title=Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators |url=http://link.springer.com/10.1023/A:1006529012972 |journal=Artificial Intelligence Review |volume=13 |issue=2 |pages=129–170 |doi=10.1023/A:1006529012972|s2cid=10284682 |url-access=subscription }}</ref> The chromosome thus contains the path of a possible tour to the cities. As an example the sequence <math>3,5,7,1,4,2,9,6,8</math> of nine cities may serve, to which the following chromosome corresponds:
{| class="wikitable" style="margin-left: auto; margin-right: auto; border: none; text-align:center;"
|-
Line 60:
=== Chromosomes for complex representations ===
The chromosomes presented above are well suited for processing tasks of continuous, mixed-integer, pure-integer or combinatorial optimization. For a combination of these optimization areas, on the other hand, it becomes increasingly difficult to map them to simple strings of values, depending on the task. The following extension of the gene concept is proposed by the EA GLEAM (General Learning Evolutionary Algorithm and Method) for this purpose:<ref name=":4">{{Citation |last1=Blume |first1=Christian |last2=Jakob |first2=Wilfried |title=GLEAM - An Evolutionary Algorithm for Planning and Control Based on Evolution Strategy |date=2002 |url=https://publikationen.bibliothek.kit.edu/170053025/3814288 |work=Conf. Proc. of Genetic and Evolutionary Computation Conference (GECCO 2002) |volume=Late Breaking Papers |pages=31–38 |access-date=2023-01-01 }}</ref> A gene is considered to be the description of an element or elementary trait of the phenotype, which may have multiple parameters. For this purpose, gene types are defined that contain as many parameters of the appropriate data type as are required to describe the particular element of the phenotype. A chromosome now consists of genes as data objects of the gene types, whereby, depending on the application, each gene type occurs exactly once as a gene or can be contained in the chromosome any number of times. The latter leads to chromosomes of dynamic length, as they are required for some problems.<ref>{{Cite journal |last1=Pawar |first1=Sunil Nilkanth |last2=Bichkar |first2=Rajankumar Sadashivrao |date=June 2015 |title=Genetic algorithm with variable length chromosomes for network intrusion detection |journal=International Journal of Automation and Computing |language=en |volume=12 |issue=3 |pages=337–342 |doi=10.1007/s11633-014-0870-x |s2cid=255346767 |issn=1476-8186|doi-access=free }}</ref><ref>{{Citation |last=Blume |first=Christian |title=Optimized Collision Free Robot Move Statement Generation by the Evolutionary Software GLEAM |date=2000 |url=http://link.springer.com/10.1007/3-540-45561-2_32 |work=Real-World Applications of Evolutionary Computing |series=Lecture Notes in Computer Science |volume=1803 |pages=330–341 |editor-last=Cagnoni |editor-first=Stefano |access-date=2023-06-25 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |language=en |doi=10.1007/3-540-45561-2_32 |isbn=978-3-540-67353-8|url-access=subscription }}</ref> The gene type definitions also contain information on the permissible value ranges of the gene parameters, which are observed during chromosome generation and by corresponding mutations, so they cannot lead to lethal mutations. For tasks with a combinatorial part, there are suitable [[Genetic operator|genetic operators]] that can move or reposition genes as a whole, i.e. with their parameters.
[[File:Genmodell Chromosombeispiel.png|thumb|212x212px|Three exemplary genes matching the adjacent gene type definitions in a chromosome organized as a list]]
[[File:Gene model gene types.png|left|thumb|224x224px|Three exemplary genes matching the adjacent gene type definitions in a chromosome organized as a list]]
Line 81:
{{DEFAULTSORT:Chromosome (Genetic Algorithm)}}
[[Category:Evolutionary algorithms]]
|