Logarithmically concave function: Difference between revisions

Content deleted Content added
Log-concave distributions: I add a supplement that binomial distribution is also a log concave distribution
 
(28 intermediate revisions by 20 users not shown)
Line 1:
{{Short description|Type of mathematical function}}
In [[convex analysis]], a [[non-negative]] function {{math|''f'' : '''R'''<sup>''n''</sup> → '''R'''<sub>+</sub>}} is '''logarithmically concave''' (or '''log-concave''' for short) if its [[___domain of a function|___domain]] is a [[convex set]], and if it satisfies the inequality
: <math>
Line 5 ⟶ 6:
for all {{math|''x'',''y'' ∈ dom ''f''}} and {{math|0&nbsp;<&nbsp;''&theta;''&nbsp;<&nbsp;1}}. If {{math|''f''}} is strictly positive, this is equivalent to saying that the [[logarithm]] of the function, {{math|log ∘ ''f''}}, is [[concave function|concave]]; that is,
: <math>
\log f(\theta x + (1 - \theta) y) \geq \theta \log f(x) + (1-\theta) \log f(y)
</math>
for all {{math|''x'',''y'' ∈ dom ''f''}} and {{math|0&nbsp;<&nbsp;''&theta;''&nbsp;<&nbsp;1}}.
Line 11 ⟶ 12:
Examples of log-concave functions are the 0-1 [[indicator function]]s of convex sets (which requires the more flexible definition), and the [[Gaussian function]].
 
Similarly, a function is '''[[log-convex]]''' if it satisfies the reverse inequality
: <math>
f(\theta x + (1 - \theta) y) \leq f(x)^{\theta} f(y)^{1 - \theta}
Line 18 ⟶ 19:
 
==Properties==
* A log-concave function is also [[Quasi-concave function|quasi-concave]]. This follows from the fact that the logarithm is monotone implying that the [[Level set#Sublevel and superlevel sets|superlevel sets]] of this function are convex.<ref name=":0" />
* Every concave function that is nonnegative on its ___domain is log-concave. However, the reverse does not necessarily hold. An example is the [[Gaussian function]] {{math|''f''(''x'')}}&nbsp;=&nbsp;{{math|exp(&minus;''x''<sup>2</sup>/2)}} which is log-concave since {{math|log ''f''(''x'')}}&nbsp;=&nbsp;{{math|&minus;''x''<sup>2</sup>/2}} is a concave function of {{math|''x''}}. But {{math|''f''}} is not concave since the [[second derivative]] is positive for |{{math|''x''}}|&nbsp;>&nbsp;1:
 
::<math>f''(x)=e^{-\frac{x^2}{2}} (x^2-1) \nleq 0</math>
* From above two points, [[Concave_functionConcave function|concavity]] <math>\Rightarrow</math> log-concavity <math>\Rightarrow</math> [[Quasiconcave_functionQuasiconcave function|quasiconcavity]].
* A twice differentiable, nonnegative function with a convex ___domain is log-concave [[if and only if]] for all {{math|''x''}} satisfying {{math|''f''(''x'')&nbsp;>&nbsp;0}},
 
::<math>f(x)\nabla^2f(x) \preceq \nabla f(x)\nabla f(x)^T</math>,<ref name=":0">{{cite book |first1=Stephen |last1=Boyd and|author-link=Stephen P. Boyd |first2=Lieven |last2=Vandenberghe, [http|chapter=Log-concave and log-convex functions |title=Convex Optimization |publisher=Cambridge University Press |year=2004 |isbn=0-521-83378-7 |chapter-url=https://wwwweb.stanford.edu/~boyd/cvxbook/ Convex Optimization]|pages=104–108 (PDF) Section 3.5}}</ref>
 
:i.e.
Line 56 ⟶ 57:
 
==Log-concave distributions==
Log-concave distributions are necessary for a number of algorithms, e.g. [[adaptive rejection sampling]]. Every distribution with log-concave density is a [[maximum entropy probability distribution]] with specified mean ''μ'' and [[Deviation risk measure]] ''D'' .<ref name="Grechuk1">{{cite journal
| last1=Grechuk, B.,| first1=Bogdan
| last2=Molyboha, A.,| first2=Anton
| last3=Zabarankin, M.| (2009)first3=Michael
| [https://www.researchgate.net/publication/220442393_Maximum_Entropy_Principle_with_General_Deviation_Measuresdate=May 2009
| title=Maximum Entropy Principle with General Deviation Measures],
| journal=[[Mathematics of Operations Research 34(2), 445--467, 2009.</ref>. ]]
| volume=34
As it happens, many common [[probability distribution]]s are log-concave. Some examples:<ref>See Mark Bagnoli and Ted Bergstrom (1989), "Log-Concave Probability and Its Applications", University of Michigan.[http://www.econ.ucsb.edu/~tedb/Theory/delta.pdf]</ref>
| issue=2
*The [[normal distribution]] and [[multivariate normal distribution]]s.
| pages=445–467
*The [[exponential distribution]].
| doi=10.1287/moor.1090.0377
*The [[uniform distribution (continuous)|uniform distribution]] over any [[convex set]].
| url=https://www.researchgate.net/profile/Bogdan-Grechuk/publication/220442393_Maximum_Entropy_Principle_with_General_Deviation_Measures/links/59132b61a6fdcc963e7ed4fd/Maximum-Entropy-Principle-with-General-Deviation-Measures.pdf}}</ref>
*The [[logistic distribution]].
As it happens, many common [[probability distribution]]s are log-concave. Some examples:<ref name=":1">See {{cite journal |first1=Mark |last1=Bagnoli and |first2=Ted |last2=Bergstrom (1989),|year=2005 "|title=Log-Concave Probability and Its Applications", University|journal=Economic ofTheory Michigan|volume=26 |issue=2 |pages=445–469 |doi=10.[1007/s00199-004-0514-4 |s2cid=1046688 |url=http://www.econ.ucsb.edu/~tedb/Theory/delta.pdf] }}</ref>
*The [[extreme value distribution]].
*Thethe [[Laplacenormal distribution]]. and [[multivariate normal distribution]]s,
*Thethe [[chiexponential distribution]].,
*Thethe [[uniform distribution (continuous)|uniform distribution]] over any [[convex set]].,
*The [[Wishart distribution]], where ''n'' >= ''p'' + 1.<ref name="prekopa">András Prékopa (1971), "Logarithmic concave measures with application to stochastic programming". ''Acta Scientiarum Mathematicarum'', 32, pp. 301–316.</ref>
*Thethe [[Dirichletbinomial distribution]], where all parameters are >= 1.<ref name="prekopa"/>
*Thethe [[gammalogistic distribution]] if the shape parameter is >= 1.,
*Thethe [[chi-squareextreme value distribution]] if the number of degrees of freedom is >= 2.,
*Thethe [[betaLaplace distribution]] if both shape parameters are >= 1.,
*Thethe [[Weibullchi distribution]] if the shape parameter is >= 1.,
*Thethe [[exponentialhyperbolic secant distribution]].,
*Thethe [[Wishart distribution]], whereif ''n'' >= ''p'' + 1.,<ref name="prekopa">{{cite journal | last1 = Prékopa | first1 = András | author-link = András Prékopa (| year = 1971), "| title = Logarithmic concave measures with application to stochastic programming". ''| journal = [[Acta Scientiarum Mathematicarum'',]] | volume = 32, pp.| issue = 3-4 | pages = 301–316 | url = http://rutcor.rutgers.edu/~prekopa/SCIENT1.pdf}}</ref>
*the [[Dirichlet distribution]], if all parameters are ≥ 1,<ref name="prekopa"/>
*the [[gamma distribution]] if the [[shape parameter]] is ≥ 1,
*the [[chi-square distribution]] if the number of degrees of freedom is ≥ 2,
*the [[beta distribution]] if both shape parameters are ≥ 1, and
*the [[Weibull distribution]] if the shape parameter is ≥ 1.
 
Note that all of the parameter restrictions have the same basic source: The exponent of non-negative quantity must be non-negative in order for the function to be log-concave.
 
The following distributions are non-log-concave for all parameters:
*Thethe [[Student's t-distribution]].,
*Thethe [[Cauchy distribution]].,
*Thethe [[Pareto distribution]].,
*Thethe [[log-normal distribution]]., and
*Thethe [[F-distribution]].
 
Note that the [[cumulative distribution function]] (CDF) of all log-concave distributions is also log-concave. However, some non-log-concave distributions also have log-concave CDF's:
*Thethe [[log-normal distribution]].,
*Thethe [[Pareto distribution]].,
*Thethe [[Weibull distribution]] when the shape parameter < 1., and
*Thethe [[gamma distribution]] when the shape parameter < 1.
 
The following are among the properties of log-concave distributions:
Line 91 ⟶ 105:
*If a multivariate density is log-concave, so is the [[marginal density]] over any subset of variables.
*The sum of two independent log-concave [[random variable]]s is log-concave. This follows from the fact that the convolution of two log-concave functions is log-concave.
*The product of two log-concave functions is log-concave. This means that [[joint distribution|joint]] densities formed by multiplying two probability densities (e.g. the [[normal-gamma distribution]], which always has a shape parameter >= 1) will be log-concave. This property is heavily used in general-purpose [[Gibbs sampling]] programs such as [[Bayesian inference using Gibbs sampling|BUGS]] and [[Just another Gibbs sampler|JAGS]], which are thereby able to use [[adaptive rejection sampling]] over a wide variety of [[conditional distribution]]s derived from the product of other distributions.
* If a density is log-concave, so is its [[survival function]].<ref name=":1" />
* If a density is log-concave, it has a monotone [[hazard rate]] (MHR), and is a [[Regular distribution (economics)|regular distribution]] since the derivative of the logarithm of the survival function is the negative hazard rate, and by concavity is monotone i.e.
::<math>\frac{d}{dx}\log\left(1-F(x)\right) = -\frac{f(x)}{1-F(x)}</math> which is decreasing as it is the derivative of a concave function.
 
==See also==
*[[logarithmically concave sequence]]
*[[logarithmically concave measure]]
*[[logarithmically convex function]]
*[[convex function]]
 
==Notes==
Line 97 ⟶ 120:
 
==References==
* {{cite book|authorlinkauthor-link=Ole Barndorff-Nielsen|last=Barndorff-Nielsen|first=Ole|title=Information and exponential families in statistical theory|series=Wiley Series in Probability and Mathematical Statistics|publisher=John Wiley \& Sons, Ltd.|___location=Chichester|year=1978|pages=ix+238 pp.|isbn=0-471-99545-2|mr=489333}}
 
* {{cite book|authorlink=Ole Barndorff-Nielsen|last=Barndorff-Nielsen|first=Ole|title=Information and exponential families in statistical theory|series=Wiley Series in Probability and Mathematical Statistics|publisher=John Wiley \& Sons, Ltd.|___location=Chichester|year=1978|pages=ix+238 pp.|isbn=0-471-99545-2|mr=489333}}
* {{cite book|title=Unimodality, convexity, and applications
|last1=Dharmadhikari|first1=Sudhakar
Line 110 ⟶ 132:
 
* {{cite book|title=Parametric Statistical Theory | last1=Pfanzagl | first1=Johann
|authorlinkauthor-link= <!-- Johann Pfanzagl -->
|last2=with the assistance of R. Hamböker
|year=1994|publisher=Walter de Gruyter
Line 116 ⟶ 138:
|mr=1291393}}
 
* {{cite book|title=Convex functions, partial orderings, and statistical applications|last1=Pečarić|first1=Josip E.|last2=Proschan|first2=Frank|last3=Tong|first3=Y. L.|<!-- authorlink2|author-link2=Frank Proschan -->
|series=Mathematics in Science and Engineering|volume=187
|publisher=Academic Press, Inc.
|___location=Boston, MA
|year=1992|pages=xiv+467 pp.
|isbn=0-12-549250-2
|mr=1162312}}
 
==See also==
*[[logarithmically concave sequence]]
*[[logarithmically concave measure]]
*[[logarithmically convex function]]
*[[convex function]]
 
{{DEFAULTSORT:Logarithmically Concave Function}}