Content deleted Content added
m Reverted edit by 2601:985:B81:5FE9:8528:C407:8249:7DCB (talk) to last version by Philipnelson99 |
Citation bot (talk | contribs) Removed URL that duplicated identifier. Removed access-date with no URL. Removed parameters. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(26 intermediate revisions by 14 users not shown) | |||
Line 8:
| alt1 = A circular diagram is separated into three rings, broken down into sections labeled with the letters: G, U, A, and C. Each represents a nucleotide found in RNA.
}}
A '''codon table''' can be used to translate a [[genetic code]] into a sequence of [[amino acid]]s.<ref name="RNA codon table">{{cite web|url=http://sites.science.oregonstate.edu/genbio/otherresources/aminoacidtranslation.htm|title=Amino Acid Translation Table|publisher=Oregon State University|access-date=2 December 2020|archive-date=29 May 2020|archive-url=https://web.archive.org/web/20200529000711/http://sites.science.oregonstate.edu/genbio/otherresources/aminoacidtranslation.htm|url-status=dead}}</ref><ref name="oregon"/> The standard genetic code is traditionally represented as an [[RNA]] [[codon]] table, because when [[protein]]s are made in a [[Cell (biology)|cell]] by [[ribosome]]s, it is [[messenger RNA]] (mRNA) that directs [[protein synthesis]].<ref name="oregon">{{cite book|last1=Bartee|first1=Lisa|last2=Brook|first2=Jack|title=MHCC Biology 112: Biology for Health Professions|url=https://mhccbiology112.pressbooks.com|publisher=Open Oregon|page=42|access-date=6 December 2020|archive-date=6 December 2020|archive-url=https://web.archive.org/web/20201206173711/https://mhccbiology112.pressbooks.com/|url-status=live}}</ref><ref name="geneticcodes">{{Cite web|title=The Genetic Codes|publisher=National Center for Biotechnology Information|vauthors=Elzanowski A, Ostell J|date=7 January 2019|access-date=21 February 2019| url=https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi|archive-url=https://web.archive.org/web/20201005105339/https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi|archive-date=5 October 2020}}</ref> The mRNA sequence is determined by the sequence of genomic [[DNA]].<ref>{{cite web|url=https://www.nature.com/scitable/topicpage/rna-functions-352/|title=RNA Functions|website=Scitable|publisher=Nature Education|access-date=5 January 2021|archive-url=https://web.archive.org/web/20081018170459/https://www.nature.com/scitable/topicpage/rna-functions-352/|archive-date=18 October 2008|url-status=live}}</ref> In this context, the standard genetic code is referred to as 'translation table 1' among [[List of genetic codes|other tables]].<ref name="geneticcodes"/> It can also be represented in a DNA codon table. The DNA codons in such tables occur on the [[Sense (molecular biology)|sense]] DNA strand and are arranged in a [[Directionality (molecular biology)|5{{prime}}-to-3{{prime}} direction]]. Different tables with alternate codons are used depending on the source of the genetic code, such as from a [[cell nucleus]], [[mitochondrion]], [[plastid]], or [[hydrogenosome]].<ref>{{cite web|url=https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi|title=The Genetic Codes|publisher=National Center for Biotechnology Information|access-date=2 December 2020|archive-date=13 May 2011|archive-url=https://web.archive.org/web/20110513014234/http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi|url-status=live}}</ref>
There are 64 different codons in the genetic code and the below tables; most specify an amino acid.<ref>{{cite web|url=https://www.genome.gov/genetics-glossary/Codon|title=Codon|website=National Human Genome Research Institute|access-date=10 October 2020|archive-date=22 October 2020|archive-url=https://web.archive.org/web/20201022081214/https://www.genome.gov/genetics-glossary/Codon|url-status=live}}</ref> Three sequences, UAG, UGA, and UAA, known as [[stop codon]]s,{{efn|group=note|Each stop codon has a specific name: UAG is ''amber'', UGA is ''opal''
[[File:Codon wheels.png|thumb|The second codon position best determines amino acid hydrophobicity. Color-coding: hydrophobicity from microenvironment in folded proteins <ref>{{cite journal |last1=Bandyopadhyay |first1=Debashree |last2=Mehler |first2=Ernest L. |date=August 2008 |title=Quantitative expression of protein heterogeneity: Response of amino acid side chains to their local environment. |journal=Proteins |volume=72 |number=2 |pages=646–59 |doi=10.1002/prot.21958|pmid=18247345 }}</ref>]]
The classical table/wheel of the standard genetic code is arbitrarily organized based on codon position 1. Saier,<ref>{{cite journal |last1=Saier |first1=Milton H. Jr. |date=10 July 2019 |title=Understanding the Genetic Code. |journal=J Bacteriol |volume=201 |number=15 |pages=e00091-19 |doi=10.1128/JB.00091-19|pmid=31010904 |pmc=6620406 }}</ref> following observations from,<ref>{{cite journal |last1=Muto |first1=A. |last2=Osawa |first2=S. |date=January 1987 |title=The guanine and cytosine content of genomic DNA and bacterial evolution. |journal=Proc Natl Acad Sci USA |volume=84 |number=1 |pages=166–9 |doi=10.1073/pnas.84.1.166|doi-access=free |pmid=3467347 |pmc=304163 |bibcode=1987PNAS...84..166M }}</ref> showed that reorganizing the wheel based instead on codon position 2 (and reordering from UCAG to UCGA) better arranges the codons by the hydrophobicity of their encoded amino acids. This suggests that early ribosomes read the second codon position most carefully, to control hydrophobicity patterns in protein sequences.
The first table—the standard table—can be used to translate [[nucleotide]] triplets into the corresponding amino acid or appropriate signal if it is a start or stop codon. The second table, appropriately called the inverse, does the opposite: it can be used to deduce a possible triplet code if the amino acid is known. As multiple codons can code for the same amino acid, the [[International Union of Pure and Applied Chemistry]]'s (IUPAC) [[nucleic acid notation]] is given in some instances.
Line 16 ⟶ 20:
==Translation table 1==
===Standard RNA codon table===
{| class="wikitable" style="border
| [[Amino acids|Amino-acid]] biochemical properties
| style="background-color:#ffe75f; width: 50px;" | Nonpolar (np)
Line 22 ⟶ 26:
| style="background-color:#bbbfe0; width: 50px;" | Basic (b)
| style="background-color:#f8b7d3; width: 50px;" | Acidic (a)
| style="border
| style="background-color:#B0B0B0;" | Termination: stop codon *
| style="border
| style="background-color:#97D8F7;" | Initiation: possible start codon ⇒
|}
Line 173 ⟶ 177:
===Inverse RNA codon table===
{| class="wikitable" style="vertical-align:top;"
|+ Inverse table for the standard genetic code (compressed using [[Nucleic acid notation|IUPAC notation]])<ref name="iupac">{{cite web|url=http://publications.iupac.org/pac/1974/pdf/4003x0277.pdf|title=Abbreviations and Symbols for Nucleic Acids, Polynucleotides and Their Constituents|author=IUPAC—IUB Commission on Biochemical Nomenclature|publisher=International Union of Pure and Applied Chemistry|access-date=5 December 2020|archive-date=9 July 2021|archive-url=https://web.archive.org/web/20210709183441/http://publications.iupac.org/pac/1974/pdf/4003x0277.pdf|url-status=live}}</ref>
|-
! Amino acid !! RNA codons !! Compressed
Line 263 ⟶ 267:
===Standard DNA codon table===
{| class="wikitable" style="border
| [[Amino acids|Amino-acid]] biochemical properties
| style="background-color:#ffe75f; width: 50px;" | Nonpolar (np)
Line 269 ⟶ 273:
| style="background-color:#bbbfe0; width: 50px;" | Basic (b)
| style="background-color:#f8b7d3; width: 50px;" | Acidic (a)
| style="border
| style="background-color:#B0B0B0;" | Termination: stop codon *
| style="border
| style="background-color:#97D8F7;" | Initiation: possible start codon ⇒
|}
Line 499 ⟶ 503:
|-
! style="text-align:center;"| START
| ATG, TTG, GTG, CTG<ref>{{Cite web |title=Choose a start codon |url=https://depts.washington.edu/agro/genomes/students/stanstart.htm |access-date=2024-08-14 |website=depts.washington.edu}}</ref>|| NTG
! style="text-align:center;"| STOP
| {{{T|T}}}AA, {{{T|T}}}GA, {{{T|T}}}AG
Line 506 ⟶ 510:
==Alternative codons in other translation tables==
{{Further|List of genetic codes}}
The genetic code was once believed to be universal:<ref name="evolve1"/> a codon would code for the same amino acid regardless of the organism or source. However, it is now agreed that the genetic code evolves,<ref name="evolve2"/> resulting in discrepancies in how a codon is translated depending on the genetic source.<ref name="evolve1">{{cite journal|last1=Osawa|first1=A|date=November 1993|title=Evolutionary changes in the genetic code
{| class="wikitable" style="border
| [[Amino acids|Amino-acid]] biochemical properties
| style="background-color:#ffe75f; width: 50px;" | Nonpolar (np)
Line 517 ⟶ 520:
| style="background-color:#bbbfe0; width: 50px;" | Basic (b)
| style="background-color:#f8b7d3; width: 50px;" | Acidic (a)
| style="border
| style="background-color:#B0B0B0;" | Termination: stop codon *
|}
{|class="wikitable sortable" style="text-align: center;"
|+ Comparison between codon translations with alternative and standard genetic codes<ref name="geneticcodes"/><ref name="Shulgina" />
! scope="col" style="width: 200px;" | Code
! scope="col" style="width: 25px;" | Translation <br/> table
Line 859 ⟶ 862:
|style="background-color:#B0B0B0;" | [[Stop codon|Stop]] *
|-
|
| UGA
|style="width: 50px; background-color:#B0B0B0;" | [[Stop codon|Stop]] * || style="width: 10px;" | or || style="width: 50px; background-color:#ffe75f;" | Trp (W) (np)
Line 948 ⟶ 951:
|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)
|style="background-color:#B0B0B0;" | [[Stop codon|Stop]] *
|-
!scope=row rowspan="1" | [[Enterosoma code|Enterosoma]]
|rowspan="1" | 34
| AGG
| AGG
|colspan="3" style="background-color:#ffe75f;" | Met (M) (np)
|style="background-color:#bbbfe0;" | Arg (R) (b)
|
|-
!scope=row rowspan="1" | [[Peptacetobacter code|''Peptacetobacter'']]
|rowspan="1" | 35
| CGG
| CGG
|colspan="3" style="background-color:#b3dec0;" | Gln (Q) (p)
|style="background-color:#bbbfe0;" | Arg (R) (b)
|
|-
!scope=row rowspan="1" | [[Anaerococcus and Onthovivens code|''Anaerococcus and Onthovivens'']]
|rowspan="1" | 36
| CGG
| CGG
|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)
|style="background-color:#bbbfe0;" | Arg (R) (b)
|
|-
!scope=row rowspan="3" | [[Absconditabacteraceae code|''Absconditabacteraceae'']]
|rowspan="3" | 37
| CGA
| CGA
|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)
|style="background-color:#bbbfe0;" | Arg (R) (b)
|
|-
| CGG
| CGG
|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)
|style="background-color:#bbbfe0;" | Arg (R) (b)
|
|-
| TGA
| UGA
|colspan="3" style="background-color:#ffe75f;" | Gly (G) (np)
|style="background-color:#B0B0B0;" | [[Stop codon|Stop]] *
|
|}
Line 964 ⟶ 1,011:
==Further reading==
*{{cite journal|vauthors=Chevance FV, Hughes KT|date=2 May 2017|title=Case for the genetic code as a triplet of triplets|url= |journal=Proceedings of the National Academy of Sciences of the United States of America|volume=114|issue=18|pages=4745–4750|doi=10.1073/pnas.1614896114|jstor=26481868|pmid=28416671|pmc=5422812|doi-access=free|bibcode=2017PNAS..114.4745C }}
*{{cite journal|vauthors=Dever TE|date=29 June 2012|title=A New Start for Protein Synthesis|url=https://zenodo.org/record/1230920|jstor=41585146|journal=Science|publisher=American Association for the Advancement of Science|volume=336|issue=6089|pages=1645–1646|doi=10.1126/science.1224439|pmid=22745408|bibcode=2012Sci...336.1645D|s2cid=44326947|access-date=17 October 2020|archive-date=8 June 2022|archive-url=https://web.archive.org/web/20220608001506/https://zenodo.org/record/1230920|url-status=live}}
*{{cite journal|vauthors=Gardner RS, Wahba AJ, Basilio C, Miller RS, Lengyel P, Speyer JF|title=Synthetic polynucleotides and the amino acid code. VII|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=48|issue=12|pages=2087–2094|date=December 1962|pmid=13946552|pmc=221128|doi=10.1073/pnas.48.12.2087|bibcode=1962PNAS...48.2087G|doi-access=free}}
*{{cite journal|vauthors=Nakamoto T|title=Evolution and the universality of the mechanism of initiation of protein synthesis|journal=Gene|volume=432|issue=1–2|pages=1–6|date=March 2009 |pmid=19056476|doi=10.1016/j.gene.2008.11.001}}
|