Content deleted Content added
fixed typo |
Citation bot (talk | contribs) Removed URL that duplicated identifier. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(21 intermediate revisions by 16 users not shown) | |||
Line 1:
{{Short description|Simulation of multiple aspects of physics}}
{{Computational physics}}
In [[computational model|computational modelling]], '''multiphysics simulation''' (often shortened to simply "multiphysics") is defined as the simultaneous simulation of different aspects of a physical system or systems and the interactions among them.<ref name=":0">{{Cite book|last=Liu|first=Zhen|title=Multiphysics in Porous Materials|date=2018|publisher=Springer|isbn=978-3-319-93028-2|___location=Cham, Switzerland|oclc=1044733613}}</ref> For example, simultaneous simulation of the physical stress on an object, the temperature distribution of the object and the thermal expansion which leads to the variation of the stress and temperature distributions would be considered a multiphysics simulation.<ref>{{Cite news|url=https://eandt.theiet.org/content/articles/2015/03/multiphysics-brings-the-real-world-into-simulations/|title=Multiphysics brings the real world into simulations|date=2015-03-16|access-date=2018-08-19|language=en-US}}</ref> Multiphysics simulation is related to multiscale simulation, which is the simultaneous simulation of a single process on either multiple time or distance scales.<ref>{{Cite journal|last1=Groen|first1=Derek|last2=Zasada|first2=Stefan J.|last3=Coveney|first3=Peter V.|date=March 2014|title=Survey of Multiscale and Multiphysics Applications and Communities|url=https://doi.org/10.1109/MCSE.2013.47|journal=Computing in Science & Engineering|volume=16|issue=2|pages=34–43|arxiv=1208.6444|doi=10.1109/mcse.2013.47|s2cid=6301539 |issn=1521-9615}}</ref>
As an [[Interdisciplinarity|interdisciplinary]]
<!-- Possibly useful references
<ref>{{Cite journal|last=Thilmany|first=Jean|date=2010-02-01|title= Multiphysics: All at Once|journal= Mechanical Engineering|volume=132|issue=2|pages=39–41|doi=10.1115/1.2010-Feb-5|issn=0025-6501|doi-access=free}}</ref>
-->
== Multiphysics simulation process ==
The implementation of a multiphysics simulation follows a typical series of steps:<ref name=":0" />
* Identify the aspects of the system to be simulated, including physical processes, starting conditions, and the coupling or boundary conditions among these processes.
* Create a [[discrete mathematics|discrete]] mathematical model of the system.
* [[numerical analysis|Numerically]] solve the model.
* Process the resulting data.
▲[[COMSOL]] defines multiphysics in a relatively narrow sense: multiphysics includes 1. coupled physical phenomena in [[computer simulation]] and 2. the study of multiple interacting [[Physical property|physical properties]]. In another definition, a multiphysics system consists of more than one component governed by its own principle(s) for evolution or equilibrium, typically conservation or constitutive laws.<ref name=":1">{{Citation|last=Krzhizhanovskaya|first=Valeria V.|title=Simulation of Multiphysics Multiscale Systems: Introduction to the ICCS'2007 Workshop|date=2007|work=Computational Science – ICCS 2007|pages=755–761|publisher=Springer Berlin Heidelberg|language=en|doi=10.1007/978-3-540-72584-8_100|isbn=9783540725831|last2=Sun|first2=Shuyu|doi-access=free}}</ref><ref name=":2">{{cite arxiv|last=Groen|first=Derek|last2=Zasada|first2=Stefan J.|last3=Coveney|first3=Peter V.|date=2012-08-31|title=Survey of Multiscale and Multiphysics Applications and Communities|eprint=1208.6444|class=cs.OH}}</ref> This definition is very close to the previous one except for that it does not emphasize physical properties.
== Types of multiphysics ==▼
▲=== Mathematical models ===
{{see also|Mathematical models}}
Generally speaking, multiphysics simulation is much harder than that for individual aspects of the physical processes.
The main extra issue is how to integrate the multiple aspects of the processes with proper handling of the interactions among them.
Such issues become quite difficult when different types of numerical methods are used for the simulations of individual physical aspects.
For example, when simulating a [[fluid-structure interaction]] problem with typical Eulerian finite volume method for flow
and Lagrangian finite element method for structure dynamics.
==See also==
Line 51 ⟶ 36:
* Paul Lethbridge, ''Multiphysics Analysis'', p26, The Industrial Physicist, Dec 2004/Jan 2005, [http://www.aip.org/tip/INPHFA/vol-10/iss-6/p26.html], Archived at: [https://web.archive.org/web/20041204052110/http://www.aip.org:80/tip/INPHFA/vol-10/iss-6/p26.html]
{{Computer simulation}}
[[Category:Numerical analysis]]
[[Category:Computational physics]]
|