Content deleted Content added
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
Citation bot (talk | contribs) Removed URL that duplicated identifier. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1:
{{Short description|Partial correlation of a time series with its lagged values}}
[[File:Partial autocorrelation function.png|thumb|Partial autocorrelation function of [[Lake Huron]]'s depth with confidence interval (in blue, plotted around 0)]]
In [[time series analysis]], the '''partial autocorrelation function''' ('''PACF''') gives the [[partial correlation]] of a stationary time series with its own lagged values, regressed the values of the time series at all shorter lags. It contrasts with the [[autocorrelation function]], which does not control for other lags.
Line 7:
==Definition==
Given a time series <math>z_t</math>, the partial autocorrelation of lag <math>k</math>, denoted <math>\phi_{k,k}</math>, is the [[autocorrelation]] between <math>z_t</math> and <math>z_{t+k}</math> with the linear dependence of <math>z_t</math> on <math>z_{t+1}</math> through <math>z_{t+k-1}</math> removed. Equivalently, it is the autocorrelation between <math>z_t</math> and <math>z_{t+k}</math> that is not accounted for by lags <math>1</math> through <math>k-1</math>, inclusive.<ref name=":3">{{Cite web |title=6.4.4.6.3. Partial Autocorrelation Plot |url=https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4463.htm |access-date=2022-07-14 |website=www.itl.nist.gov}}</ref><math display="block">\phi_{1,1} = \operatorname{corr}(z_{t+1}, z_{t}),\text{ for }k= 1,</math><math display="block">\phi_{k,k} = \operatorname{corr}(z_{t+k} - \hat{z}_{t+k},\, z_{t} - \hat{z}_{t}),\text{ for }k\geq 2,</math>where <math>\hat{z}_{t+k}</math> and <math>\hat{z}_t</math> are [[linear combination]]s of <math>\{z_{t+1}, z_{t+2}, ..., z_{t+k-1}\}</math> that minimize the [[mean squared error]] of <math>z_{t+k}</math> and <math>z_t</math> respectively. For [[stationary process]]es, the coefficients in <math>\hat{z}_{t+k}</math> and <math>\hat{z}_t</math> are the same, but reversed:<ref name=":4">{{Cite book |
== Calculation ==
The theoretical partial autocorrelation function of a stationary time series can be calculated by using the Durbin–Levinson Algorithm:<math display="block">\phi_{n,n} = \frac{\rho(n) - \sum_{k=1}^{n-1} \phi_{n-1, k} \rho(n - k)}{1 - \sum_{k=1}^{n-1} \phi_{n-1, k} \rho(k) }</math>where <math>\phi_{n,k} = \phi_{n-1, k} - \phi_{n,n} \phi_{n-1,n-k}</math> for <math>1 \leq k \leq n - 1</math> and <math>\rho(n)</math> is the autocorrelation function.<ref>{{Cite journal |last=Durbin |first=J. |date=1960 |title=The Fitting of Time-Series Models |url=https://www.jstor.org/stable/1401322 |journal=Revue de l'Institut International de Statistique / Review of the International Statistical Institute |volume=28 |issue=3 |pages=233–244 |doi=10.2307/1401322 |jstor=1401322 |issn=0373-1138|url-access=subscription }}</ref><ref>{{Cite book |
The formula above can be used with sample autocorrelations to find the sample partial autocorrelation function of any given time series.<ref name=":0">{{Cite book |
== Examples ==
The following table summarizes the partial autocorrelation function of different models:<ref name=":1" /><ref name=":2">{{Cite book |last=Das |first=Panchanan
{| class="wikitable"
!Model
Line 45:
Partial autocorrelation is a commonly used tool for identifying the order of an autoregressive model.<ref name=":0" /> As previously mentioned, the partial autocorrelation of an AR(''p'') process is zero at lags greater than ''p''.<ref name=":1" /><ref name=":2" /> If an AR model is determined to be appropriate, then the sample partial autocorrelation plot is examined to help identify the order.
The partial autocorrelation of lags greater than ''p'' for an AR(''p'') time series are approximately independent and [[Normal distribution|normal]] with a [[mean]] of 0.<ref>{{Cite journal |last=Quenouille |first=M. H. |date=1949 |title=Approximate Tests of Correlation in Time-Series |url=https://onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1949.tb00023.x |journal=Journal of the Royal Statistical Society, Series B (Methodological) |language=en |volume=11 |issue=1 |pages=68–84 |doi=10.1111/j.2517-6161.1949.tb00023.x|url-access=subscription }}</ref> Therefore, a [[confidence interval]] can be constructed by dividing a selected [[Standard score|z-score]] by <math>\sqrt{n}</math>. Lags with partial autocorrelations outside of the confidence interval indicate that the AR model's order is likely greater than or equal to the lag. Plotting the partial autocorrelation function and drawing the lines of the confidence interval is a common way to analyze the order of an AR model. To evaluate the order, one examines the plot to find the lag after which the partial autocorrelations are all within the confidence interval. This lag is determined to likely be the AR model's order.<ref name=":3" />
==References==
|