Content deleted Content added
m →Distinction from multivalued functions: typo: ("d" is the key next to "e" on most commercial keyboards.) Tag: Reverted |
Citation bot (talk | contribs) Removed URL that duplicated identifier. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(One intermediate revision by one other user not shown) | |||
Line 5:
A '''set-valued function''', also called a '''correspondence''' or '''set-valued [[Relation (mathematics)|relation]]''', is a mathematical [[Function (mathematics)|function]] that maps elements from one set, the [[___domain of a function|___domain of the function]], to subsets of another set.<ref name=":02">{{Cite book |last1=Aliprantis |first1=Charalambos D. |url=https://books.google.com/books?id=Ma31CAAAQBAJ |title=Infinite Dimensional Analysis: A Hitchhiker's Guide |last2=Border |first2=Kim C. |date=2013-03-14 |publisher=Springer Science & Business Media |isbn=978-3-662-03961-8 |pages=523 |language=en}}</ref><ref name=":0">{{Cite book |last1=Wriggers |first1=Peter |url=https://books.google.com/books?id=R4lqCQAAQBAJ |title=New Developments in Contact Problems |last2=Panatiotopoulos |first2=Panagiotis |date=2014-05-04 |publisher=Springer |isbn=978-3-7091-2496-3 |pages=29 |language=en}}</ref> Set-valued functions are used in a variety of mathematical fields, including [[Mathematical optimization|optimization]], [[control theory]] and [[game theory]].
Set-valued functions are also known as [[multivalued function]]s in some references,<ref>{{Cite book |last=Repovš |first=Dušan
== Distinction from multivalued functions ==
[[File:Multivalued_functions_illustration.svg|thumb|right|600px|Illustration distinguishing multivalued functions from set-valued relations according to the criterion in page 29 of ''New Developments in Contact Problems'' by Wriggers and Panatiotopoulos (2014).]]
Although other authors may distinguish them differently (or not at all), Wriggers and Panatiotopoulos (2014) distinguish multivalued functions from set-valued functions (which they called ''set-valued relations'') by the fact that multivalued functions only take multiple values at finitely (or
Alternatively, a [[multivalued function]] is a set-valued function {{mvar|f}} that has a further [[continuous function|continuity]] property, namely that the choice of an element in the set <math>f(x)</math> defines a corresponding element in each set <math>f(y)</math> for {{mvar|y}} close to {{mvar|x}}, and thus defines [[locally]] an ordinary function.
== Example ==
|