Content deleted Content added
Added {{visible anchor|}} |
Citation bot (talk | contribs) Add: authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(12 intermediate revisions by 10 users not shown) | |||
Line 1:
{{Short description|Mapping function}}
{{mcn|date=April 2024}}
In [[mathematics]], an '''additive set function''' is a [[function (mathematics)|function]] <math display>\mu</math> mapping sets to numbers, with the property that its value on a [[Union (set theory)|union]] of two [[disjoint set|disjoint]] sets equals the sum of its values on these sets, namely, <math display=inline>\mu(A \cup B) = \mu(A) + \mu(B).</math> If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of ''k'' disjoint sets (where ''k'' is a finite number) equals the sum of its values on the sets. Therefore, an additive [[set function]] is also called a '''finitely
Additivity and sigma-additivity are particularly important properties of [[Measure (mathematics)|measures]]. They are abstractions of how intuitive properties of size ([[length]], [[area]], [[volume]]) of a set sum when considering multiple objects. Additivity is a weaker condition than σ-additivity; that is, σ-additivity implies additivity.
Line 27 ⟶ 28:
Suppose that in addition to a sigma algebra <math display=inline>\mathcal{A},</math> we have a [[Topological space|topology]] <math>\tau.</math> If for every [[Directed set|directed]] family of measurable [[open set]]s <math display=inline>\mathcal{G} \subseteq \mathcal{A} \cap \tau,</math>
<math display=block>\mu\left(\bigcup \mathcal{G} \right) = \sup_{G\in\mathcal{G}} \mu(G),</math>
we say that <math>\mu</math> is <math>\tau</math>-additive. In particular, if <math>\mu</math> is [[Inner regular measure|inner regular]] (with respect to compact sets) then it is
==Properties==
Line 35 ⟶ 36:
===Value of empty set===
Either <math>\mu(\varnothing) = 0,</math> or <math>\mu</math> assigns <math>\infty</math> to all sets in its ___domain, or <math>\mu</math> assigns <math>- \infty</math> to all sets in its ___domain. ''Proof'': additivity implies that for every set <math>A,</math> <math>\mu(A) = \mu(A \cup \varnothing) = \mu(A) + \mu( \varnothing)
===Monotonicity===
Line 43 ⟶ 44:
===Modularity{{Anchor|modularity}}===
{{See also|Valuation (geometry)}}
{{See also|Valuation (measure theory)}}
A [[set function]] <math>\mu</math> on a [[family of sets]] <math>\mathcal{S}</math> is called a '''{{visible anchor|modular set function}}''' and a '''[[Valuation (geometry)|{{visible anchor|valuation}}]]''' if whenever <math>A,</math> <math>B,</math> <math>A\cup B,</math> and <math>A\cap B</math> are elements of <math>\mathcal{S},</math> then
<math display="block"> \
The above property is called '''{{visible anchor|modularity}}''' and the argument below proves that
Given <math>A</math> and <math>B,</math> <math>\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).</math> ''Proof'': write <math>A = (A \cap B) \cup (A \setminus B)</math> and <math>B = (A \cap B) \cup (B \setminus A)</math> and <math>A \cup B = (A \cap B) \cup (A \setminus B) \cup (B \setminus A),</math> where all sets in the union are disjoint. Additivity implies that both sides of the equality equal <math>\mu(A \setminus B) + \mu(B \setminus A) + 2\mu(A \cap B).</math>
Line 71 ⟶ 73:
See [[Measure (mathematics)|measure]] and [[signed measure]] for more examples of {{sigma}}-additive functions.
A ''charge'' is defined to be a finitely additive set function that maps <math>\varnothing</math> to <math>0.</math><ref>{{Cite book|
===An additive function which is not σ-additive===
Line 81 ⟶ 83:
One can check that this function is additive by using the linearity of the limit. That this function is not σ-additive follows by considering the sequence of disjoint sets
<math display=block>A_n = [n,n + 1)</math>
for <math>n = 0, 1, 2, \ldots</math> The union of these sets is the [[positive reals]], and <math>\mu</math> applied to the union is then one, while <math>\mu</math> applied to any of the individual sets is zero, so the sum of <math>\mu(A_n)</math> is also zero, which proves the counterexample.
==Generalizations==
One may define additive functions with values in any additive [[monoid]] (for example any [[Group (mathematics)|group]] or more commonly a [[vector space]]). For sigma-additivity, one needs in addition that the concept of [[limit of a sequence]] be defined on that set. For example, [[spectral measure]]s are sigma-additive functions with values in a [[Banach algebra]]. Another example, also from [[quantum mechanics]], is the [[positive operator-valued measure]].
==See also==
|