Content deleted Content added
m fix spacing around math (via WP:JWB) |
Citation bot (talk | contribs) Add: authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1:
{{Short description|Mapping function}}
{{mcn|date=April 2024}}
In [[mathematics]], an '''additive set function''' is a [[function (mathematics)|function]] <math display
Additivity and sigma-additivity are particularly important properties of [[Measure (mathematics)|measures]]. They are abstractions of how intuitive properties of size ([[length]], [[area]], [[volume]]) of a set sum when considering multiple objects. Additivity is a weaker condition than σ-additivity; that is, σ-additivity implies additivity.
Line 28:
Suppose that in addition to a sigma algebra <math display=inline>\mathcal{A},</math> we have a [[Topological space|topology]] <math>\tau.</math> If for every [[Directed set|directed]] family of measurable [[open set]]s <math display=inline>\mathcal{G} \subseteq \mathcal{A} \cap \tau,</math>
<math display=block>\mu\left(\bigcup \mathcal{G} \right) = \sup_{G\in\mathcal{G}} \mu(G),</math>
we say that <math>\mu</math> is <math>\tau</math>-additive. In particular, if <math>\mu</math> is [[Inner regular measure|inner regular]] (with respect to compact sets) then it is
==Properties==
Line 36:
===Value of empty set===
Either <math>\mu(\varnothing) = 0,</math> or <math>\mu</math> assigns <math>\infty</math> to all sets in its ___domain, or <math>\mu</math> assigns <math>- \infty</math> to all sets in its ___domain. ''Proof'': additivity implies that for every set <math>A,</math> <math>\mu(A) = \mu(A \cup \varnothing) = \mu(A) + \mu( \varnothing)
===Monotonicity===
Line 47:
A [[set function]] <math>\mu</math> on a [[family of sets]] <math>\mathcal{S}</math> is called a '''{{visible anchor|modular set function}}''' and a '''[[Valuation (geometry)|{{visible anchor|valuation}}]]''' if whenever <math>A,</math> <math>B,</math> <math>A\cup B,</math> and <math>A\cap B</math> are elements of <math>\mathcal{S},</math> then
<math display="block"> \
The above property is called '''{{visible anchor|modularity}}''' and the argument below proves that additivity implies modularity.
Line 73:
See [[Measure (mathematics)|measure]] and [[signed measure]] for more examples of {{sigma}}-additive functions.
A ''charge'' is defined to be a finitely additive set function that maps <math>\varnothing</math> to <math>0.</math><ref>{{Cite book|
===An additive function which is not σ-additive===
Line 87:
==Generalizations==
One may define additive functions with values in any additive [[monoid]] (for example any [[Group (mathematics)|group]] or more commonly a [[vector space]]). For sigma-additivity, one needs in addition that the concept of [[limit of a sequence]] be defined on that set. For example, [[spectral measure]]s are sigma-additive functions with values in a [[Banach algebra]]. Another example, also from [[quantum mechanics]], is the [[positive operator-valued measure]].
==See also==
|