Content deleted Content added
GreenC bot (talk | contribs) Move 1 url. Wayback Medic 2.5 per WP:URLREQ#nih.gov |
Citation bot (talk | contribs) Added article-number. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Biochemistry | #UCB_Category 20/248 |
||
Line 17:
GC-rich areas are also where the ratio [[point mutation]] type is altered slightly: there are more [[Transition (genetics)|transitions]], which are changes from purine to purine or pyrimidine to pyrimidine, compared to [[transversion]]s, which are changes from purine to pyrimidine or pyrimidine to purine. The transitions are less likely to change the encoded amino acid and remain a [[silent mutation]] (especially if they occur in the third [[nucleotide]] of a codon) which is usually beneficial to the organism during translation and protein formation.<ref>{{Cite web|url=http://rosalind.info/glossary/gene-coding-region/|title=ROSALIND {{!}} Glossary {{!}} Gene coding region|website=rosalind.info|access-date=2019-10-31}}</ref>
This indicates that essential coding regions (gene-rich) are higher in GC-content and more stable and resistant to [[mutation]] compared to accessory and non-essential regions (gene-poor).<ref>{{cite journal | vauthors = Vinogradov AE | title = DNA helix: the importance of being GC-rich | journal = Nucleic Acids Research | volume = 31 | issue = 7 | pages = 1838–44 | date = April 2003 | pmid = 12654999 | pmc = 152811 | doi = 10.1093/nar/gkg296 }}</ref> However, it is still unclear whether this came about through neutral and random mutation or through a pattern of [[Natural selection|selection]].<ref>{{cite journal | vauthors = Bohlin J, Eldholm V, Pettersson JH, Brynildsrud O, Snipen L | title = The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes | journal = BMC Genomics | volume = 18 | issue = 1 |
== Structure and function ==
|