Content deleted Content added
No edit summary |
Repaired typo in equation, changing a minus sign to an equals |
||
(30 intermediate revisions by 19 users not shown) | |||
Line 1:
{{short description|Integer that is both a perfect square and a triangular number}}
{{for|squares of triangular numbers|squared triangular number}}
[[File:
In [[mathematics]], a '''square triangular number''' (or '''triangular square number''') is a number which is both a [[triangular number]] and a [[square number
==Solution as a Pell equation==
Write
{{bi|left=1.6|<math>\displaystyle N_k = s_k^2 = \frac{t_k(t_k+1)}{2}.</math>}}
Define the ''triangular root'' of a triangular number <math>N=\tfrac{n(n+1)}{2}</math> to be <math>n</math>. From this definition and the quadratic formula,
{{bi|left=1.6|<math>\displaystyle n = \frac{\sqrt{8N + 1} - 1}{2}.</math>}}
Therefore, <math>N</math> is triangular (<math>n</math> is an integer) [[if and only if]] <math>8N+1</math> is square. Consequently, a square number <math>M^2</math> is also triangular if and only if <math>8M^2+1</math> is square, that is, there are numbers <math>x</math> and <math>y</math> such that <math>x^2-8y^2=1</math>. This is an instance of the [[Pell equation]] <math>x^2-ny^2=1</math> with <math>n=8</math>. All Pell equations have the trivial solution <math>x=1,y=0</math> for any <math>n</math>; this is called the zeroth solution, and indexed as <math>(x_0,y_0)=(1,0)</math>. If <math>(x_k,y_k)</math> denotes the <math>k</math>th nontrivial solution to any Pell equation for a particular <math>n</math>, it can be shown by the method of descent that the next solution is
{{bi|left=1.6|<math>\displaystyle \begin{align}
x_{k+1} &= 2x_k x_1 - x_{k-1}, \\
y_{k+1} &= 2y_k x_1 - y_{k-1}.
\end{align}</math>}}
Hence there are
{{bi|left=1.6|<math>\displaystyle s_k = y_k , \quad t_k = \frac{x_k - 1}{2}, \quad N_k = y_k^2.</math>}}
Hence, the first square triangular number, derived from <math>(3,1)</math>, is <math>1</math>, and the next, derived from <math>6\cdot (3,1)-(1,0)=(17,6)</math>, is <math>36</math>.
The sequences <math>N_k</math>, <math>s_k</math> and <math>t_k</math> are the [[OEIS]] sequences {{OEIS2C|id=A001110}}, {{OEIS2C|id=A001109}}, and {{OEIS2C|id=A001108}} respectively.
==Explicit formula==
In 1778 [[Leonhard Euler]] determined the explicit formula<ref name=Dickson>
{{cite book | last1 = Dickson | first1 = Leonard Eugene |
</ref><ref name=Euler>
{{cite journal |last=Euler |first=Leonhard |
</ref>{{Rp|12–13}}
{{bi|left=1.6|<math>\displaystyle N_k = \left( \frac{\left(3 + 2\sqrt{2}\right)^k - \left(3 - 2\sqrt{2}\right)^k}{4\sqrt{2}} \right)^2.
</math>}}
Other equivalent formulas (obtained by expanding this formula) that may be convenient include
{{bi|left=1.6|<math>\displaystyle \begin{align}
N_k &= \tfrac{1}{32} \left( \left( 1 + \sqrt{2} \right)^{2k} - \left( 1 - \sqrt{2} \right)^{2k} \right)^2 \\
&= \tfrac{1}{32} \left( \left( 1 + \sqrt{2} \right)^{4k}-2 + \left( 1 - \sqrt{2} \right)^{4k} \right) \\
&= \tfrac{1}{32} \left( \left( 17 + 12\sqrt{2} \right)^k -2 + \left( 17 - 12\sqrt{2} \right)^k \right).
\end{align}</math>}}
The corresponding explicit formulas for <math>s_k</math> and <math>t_k</math> are:<ref name=Euler />{{Rp|13}}
{{bi|left=1.6|<math>\displaystyle \begin{align}
s_k &= \frac{\left(3 + 2\sqrt{2}\right)^k - \left(3 - 2\sqrt{2}\right)^k}{4\sqrt{2}}, \\
t_k &= \frac{\left(3 + 2\sqrt{2}\right)^k + \left(3 - 2\sqrt{2}\right)^k - 2}{4}.
\end{align}</math>}}
==Recurrence relations==
The solution to the Pell equation can be expressed as a [[recurrence relation]] for the equation's solutions. This can be translated into recurrence equations that directly express the square triangular numbers, as well as the sides of the square and triangle involved. We have<ref>{{MathWorld|title=Square Triangular Number|urlname=SquareTriangularNumber}}</ref>{{Rp|(12)}}
{{bi|left=1.6|<math>\displaystyle \begin{align}
N_k &= 34N_{k-1} - N_{k-2} + 2,& \text{with }N_0 &= 0\text{ and }N_1 = 1; \\
N_k &= \left(6\sqrt{N_{k-1}} - \sqrt{N_{k-2}}\right)^2,& \text{with }N_0 &= 0\text{ and }N_1 = 1.
\end{align}</math>}}
We have<ref name=Dickson /><ref name=Euler />{{Rp|13}}
s_k &= 6s_{k-1} - s_{k-2},& \text{with }s_0 &= 0\text{ and }s_1 = 1; \\
t_k &= 6t_{k-1} - t_{k-2} + 2,& \text{with }t_0 &= 0\text{ and }t_1 = 1.
\end{align}</math>}}
==Other characterizations==
All square triangular numbers have the form
{{cite book | last1 = Ball | first1 = W. W. Rouse |
</ref>
A. V. Sylwester gave a short proof that there are
The left hand side of this equation is in the form of a triangular number, and as the product of three squares, the right hand side is square.<ref name=Sylwester>
{{cite journal |last1=Pietenpol |first1=J. L. |first2=A. V. |last2=Sylwester |first3=Erwin |last3=Just |first4=R. M. |last4=Warten |date=February 1962 |title=Elementary Problems and Solutions: E 1473, Square Triangular Numbers |journal=American Mathematical Monthly |volume=69 |issue=2 |pages=168–169 |issn=0002-9890 |jstor=2312558|publisher=Mathematical Association of America | doi = 10.2307/2312558}}
</ref>
The [[generating function]] for the square triangular numbers is:<ref>{{cite web |first=Simon |last=Plouffe |author-link=Simon Plouffe |title=1031 Generating Functions |url=http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf |publisher=University of Quebec, Laboratoire de combinatoire et d'informatique mathématique |page=A.129 |date=August 1992 |access-date=2009-05-11 |archive-date=2012-08-20 |archive-url=https://web.archive.org/web/20120820012535/http://www.plouffe.fr/simon/articles/FonctionsGeneratrices.pdf |url-status=dead }}</ref>
:<math>\frac{1+z}{(1-z)\left(z^2 - 34z + 1\right)} = 1 + 36z + 1225 z^2 + \cdots</math>
==See also==
|