Word problem for groups: Difference between revisions

Content deleted Content added
No edit summary
Tags: Reverted Mobile edit Mobile web edit
No edit summary
 
(35 intermediate revisions by 17 users not shown)
Line 1:
{{Short description|Problem in finite group theory}}
{{About|algorithmic problems in group theory|related uses|Word problem (disambiguation){{!}}word problem}}
{{CS1 config|mode=cs2}}
In [[mathematics]], especially in the area of [[abstract algebra]] known as [[combinatorial group theory]], the '''word problem''' for a [[finitely generated group]] ''G'' is the algorithmic problem of deciding whether two words in the generators represent the same element. More precisely, if ''A'' is a finite set of [[Generating set of a group|generators]] for ''G'' then the word problem is the membership problem for the [[formal language]] of all words in ''A'' and a formal set of inverses that map to the identity under the natural map from the [[free monoid with involution]] on ''A'' to the group ''G''. If ''B'' is another finite generating set for ''G'', then the word problem over the generating set ''B'' is equivalent to the word problem over the generating set ''A''. Thus one can speak unambiguously of the decidability of the word problem for the finitely generated group ''G''.
In [[mathematics]], especially in the area of [[abstract algebra]] known as [[combinatorial group theory]], the '''word problem''' for a [[finitely generated group]] <math>G</math> is the algorithmic problem of deciding whether two words in the generators represent the same element of <math>G</math>. The word problem is a well-known example of an [[undecidable problem]].
 
In [[mathematics]], especially in the area of [[abstract algebra]] known as [[combinatorial group theory]], the '''word problem''' for a [[finitely generated group]] ''G'' is the algorithmic problem of deciding whether two words in the generators represent the same element. More precisely, ifIf ''<math>A''</math> is a finite set of [[Generating set of a group|generators]] for ''<math>G''</math>, then the word problem is the membership problem for the [[formal language]] of all words in ''<math>A''</math> and a formal set of inverses that map to the identity under the natural map from the [[free monoid with involution]] on ''<math>A''</math> to the group ''<math>G''</math>. If ''<math>B''</math> is another finite generating set for ''<math>G''</math>, then the word problem over the generating set ''<math>B''</math> is equivalent to the word problem over the generating set ''<math>A''</math>. Thus one can speak unambiguously of the decidability of the word problem for the finitely generated group ''<math>G''</math>.
The related but different '''uniform word problem''' for a class ''K'' of recursively presented groups is the algorithmic problem of deciding, given as input a [[presentation of a group|presentation]] ''P'' for a group ''G'' in the class ''K'' and two words in the generators of ''G'', whether the words represent the same element of ''G''. Some authors require the class ''K'' to be definable by a [[recursively enumerable]] set of presentations.
 
The related but different '''uniform word problem''' for a class ''<math>K''</math> of recursively presented groups is the algorithmic problem of deciding, given as input a [[presentation of a group|presentation]] ''<math>P''</math> for a group ''<math>G''</math> in the class ''<math>K''</math> and two words in the generators of ''<math>G''</math>, whether the words represent the same element of ''<math>G''</math>. Some authors require the class ''<math>K''</math> to be definable by a [[recursively enumerable]] set of presentations.
 
== History ==
 
Throughout the history of the subject, computations in groups havelhave been carried out lplusinlgusing various [[Normal form (abstract rewriting)|normal forms]]. These usually implicitly solve the word problem for the lllgroupsgroups in question. In 1911 [[Max Dehn]] proposed that the word problem was an important area of study in its own right,llll{{sfn|Dehn|1911}} together with the [[conjugacy problem]] and the [[group isomorphism problem]]. In 1912 he gave an algorithm that solves both the word and conjugacy problem for the [[fundamental group]]s of closed orientable two-dimensional manifolds of genus greater than or equal to 2.{{sfn|Dehn|1912}} Subsequent authors have greatly extended [[Small cancellation theory#Dehn's algorithm|Dehn's algorithm]] and applied it to a wide range of group theoretic [[decision problem]]s.<ref>{{Citation|last=Greendlinger|first=Martin|date=June 1959|title=Dehn's algorithm for the word problem|journal=[[Communications on Pure and Applied Mathematics]]|volume=13|issue=1|pages=67–83|doi=10.1002/cpa.3160130108|postscript=.}}</ref><ref>{{Citation|last=Lyndon|first=Roger C.|author-link=Roger Lyndon|date=September 1966|title=On Dehn's algorithm|journal=[[Mathematische Annalen]]|volume=166|issue=3|pages=208–228|doi=10.1007/BF01361168|hdl=2027.42/46211|s2cid=36469569|postscript=.|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002296799&L=1|hdl-access=free}}</ref><ref>{{Citation|author-link1=Paul Schupp|last1=Schupp|first1=Paul E.|date=June 1968|title=On Dehn's algorithm and the conjugacy problem|journal=Mathematische Annalen|volume=178|issue=2|pages=119–130|doi=10.1007/BF01350654|s2cid=120429853|postscript=.|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=GDZPPN002300036&L=1}}</ref>
 
It was shown by [[Pyotr Novikov]] in 1955 that there exists a finitely presented group ''<math>G''</math> such that the word problem for ''<math>G''</math> is [[Undecidable problem|undecidable]].<ref>{{Citation|last=Novikov|first=P. S.|author-link=Pyotr Novikov|year=1955|title=On the algorithmic unsolvability of the word problem in group theory|language=ru| zbl=0068.01301 | journal=[[Proceedings of the Steklov Institute of Mathematics]]|volume=44|pages=1–143}}</ref> It follows immediately that the uniform word problem is also undecidable. A different proof was obtained by [[William Boone (mathematician)|William Boone]] in 1958.<ref>{{Citation|last=Boone|first=William W.| author-link=William Boone (mathematician) | year=1958|title=The word problem|journal=[[Proceedings of the National Academy of Sciences]]|volume=44|issue=10|pages=1061–1065|url=http://www.pnas.org/cgi/reprint/44/10/1061.pdf|doi=10.1073/pnas.44.10.1061|zbl=0086.24701 |pmc=528693|pmid=16590307|bibcode=1958PNAS...44.1061B|doi-access=free}}</ref>
 
The word problem was one of the first examples of an unsolvable problem to be found not in [[mathematical logic]] or the [[theory of algorithms]], but in one of the central branches of classical mathematics, [[abstract algebra|algebra]]. As a result of its unsolvability, several other problems in combinatorial group theory have been shown to be unsolvable as well.
 
It is important to realize that theThe word problem is in fact solvable for many groups ''<math>G''</math>. For example, [[polycyclic group]]s have solvable word problems since the normal form of an arbitrary word in a polycyclic presentation is readily computable; other algorithms for groups may, in suitable circumstances, also solve the word problem, see the [[Todd–Coxeter algorithm]]<ref>{{citation |last1=Todd |first1=J.A. Todd and|last2=Coxeter |first2=H.S.M. Coxeter. "|title=A practical method for enumerating cosetcosets of a finite abstract group", ''Proc,|journal=[[Proceedings Edinburghof Maththe Soc.''Edinburgh (2),Mathematical '''Society]] |volume=5''', 25---34|issue=1 |pages=26–34 |date=1936 |doi=10.1017/S0013091500008221 1936|url=|doi-access=free }}</ref> and the [[Knuth–Bendix completion algorithm]].<ref>{{citation |first1=D. |last1=Knuth and |first2=P. |last2=Bendix. "|chapter=Simple word problems in universal algebras." ''Computational Problems in Abstract Algebra'' (Ed|chapter-url=https://books.google.com/books?id=KIDiBQAAQBAJ&pg=PA263 |editor-first=J. |editor-last=Leech) pages|title=Computational 263--297,Problems 1970.</ref>in OnAbstract theAlgebra: otherProceedings hand, the fact thatof a particularConference algorithmHeld doesat notOxford solveUnder the word problem for a particular group does not show that the group has an unsolvable word problem. For instance Dehn's algorithm does not solve the word problem for the fundamental groupAuspices of the [[torus]].Science HoweverResearch thisCouncil groupAtlas isComputer theLaboratory, direct29th productAugust ofto two2nd infiniteSeptember cyclic1967 groups|publisher=Springer and|date=2014 so|orig-year=1970 has|isbn=9781483159423 a|pages=263–297 solvable word problem.|url=}}
</ref> On the other hand, the fact that a particular algorithm does not solve the word problem for a particular group does not show that the group has an unsolvable word problem. For instance Dehn's algorithm does not solve the word problem for the fundamental group of the [[torus]]. However this group is the direct product of two infinite cyclic groups and so has a solvable word problem.
 
== A more concrete description ==
 
In more concrete terms, the uniform word problem can be expressed as a [[rewriting]] question, for [[literal string]]s.{{sfn|Rotman|1994}} For a presentation ''<math>P''</math> of a group ''<math>G''</math>, ''<math>P''</math> will specify a certain number of generators
 
:''<math>x'', ''y'', ''z'', ...\ldots </math>
 
for ''<math>G''</math>. We need to introduce one letter for ''<math>x''</math> and another (for convenience) for the group element represented by ''x''<supmath>&minus;x^{-1}</supmath>. Call these letters (twice as many as the generators) the alphabet <math>\Sigma</math> for our problem. Then each element in ''<math>G''</math> is represented in ''some way'' by a product
 
:''<math>abc ... pqr''</math>
 
of symbols from <math>\Sigma</math>, of some length, multiplied in ''<math>G''</math>. The string of length 0 ([[Empty string|null string]]) stands for the [[identity element]] ''<math>e''</math> of ''<math>G''</math>. The crux of the whole problem is to be able to recognise ''all'' the ways ''<math>e''</math> can be represented, given some relations.
 
The effect of the ''relations'' in ''<math>G''</math> is to make various such strings represent the same element of ''<math>G''</math>. In fact the relations provide a list of strings that can be either introduced where we want, or cancelled out whenever we see them, without changing the 'value', i.e. the group element that is the result of the multiplication.
 
For a simple example, takeconsider the group given by the presentation {''<math>\langle a'' \, | ''\, a''<sup>^3 = e \rangle</supmath>}. Writing ''<math>A''</math> for the inverse of ''<math>a''</math>, we have possible strings combining any number of the symbols ''<math>a''</math> and ''<math>A''</math>. Whenever we see ''<math>aaa''</math>, or ''<math>aA''</math> or ''<math>Aa''</math> we may strike these out. We should also remember to strike out ''<math>AAA''</math>; this says that since the cube of ''<math>a''</math> is the identity element of ''<math>G''</math>, so is the cube of the inverse of ''<math>a''</math>. Under these conditions the word problem becomes easy. First reduce strings to the empty string, ''<math>a''</math>, ''<math>aa''</math>, ''<math>A''</math> or ''<math>AA''</math>. Then note that we may also multiply by ''<math>aaa''</math>, so we can convert ''<math>A''</math> to ''<math>aa''</math> and convert ''<math>AA''</math> to ''<math>a''</math>. The result is that the word problem, here for the [[cyclic group]] of order three, is solvable.
 
This is not, however, the typical case. For the example, we have a [[canonical form]] available that reduces any string to one of length at most three, by decreasing the length monotonically. In general, it is not true that one can get a canonical form for the elements, by stepwise cancellation. One may have to use relations to expand a string many-fold, in order eventually to find a cancellation that brings the length right down.
 
The upshot is, in the worst case, that the relation between strings that says they are equal in ''<math>G''</math> is an ''[[Undecidable problem]]''.
 
==Examples==
{{more citations needed section|date=December 2023|reason=Citations should be given for individual examples.}}
The following groups have a solvable word problem:
*[[Automatic group]]s, including:
Line 46 ⟶ 51:
*Finitely generated [[free abelian group]]s
*[[Polycyclic group]]s
*Finitely generated recursively [[Absolute presentation of a group|absolutely presented group]]s,<ref>{{citation |first=H. |last=Simmons, "|title=The word problem for absolute presentations." ''|journal=[[J. London Math. Soc.'']] (|volume=s2-6 |issue=2) 6,|pages=275–280 275|date=1973 |doi=10.1112/jlms/s2-2806.2.275 1973|url=}}</ref> including:
**Finitely presented simple groups.
*Finitely presented [[residually finite]] groups
*One relator groups<ref>{{citation |first1=Roger C. |last1=Lyndon, |first2=Paul E |last2=Schupp, |title=Combinatorial Group Theory, |publisher=Springer, |date=2001 |isbn=9783540411581 |pages=1–60 |url=https://books.google.com/books?id=aiPVBygHi_oC&pg=PP1}}</ref> (this is a theorem of Magnus), including:
**Fundamental groups of closed orientable two-dimensional manifolds.
*Combable groups
Line 55 ⟶ 60:
 
Examples with unsolvable word problems are also known:
*Given a recursively enumerable set ''<math>A''</math> of positive integers that has insoluble membership problem, ⟨''<math>\langle a, b, c, d'' \, | ''\, a<sup>^n</sup>ba<sup> b a^n</sup>'' = ''c<sup>^n</sup>dc<sup> d c^n</sup>'' : ''n'' \in ''A''⟩ \rangle</math> is a finitely generated group with a recursively enumerable presentation whose word problem is insoluble{{sfn|Collins|Zieschang|19901993|p=149}}
*Every finitely generated group with a recursively enumerable presentation and insoluble word problem is a subgroup of a finitely presented group with insoluble word problem{{sfn|Collins|Zieschang|1993|loc=Cor. 7.2.6}}
*The number of relators in a finitely presented group with insoluble word problem may be as low as 14 {{sfn|Collins|1969}} or even 12.{{sfn|Borisov|1969}}{{sfn|Collins|1972}}
Line 75 ⟶ 80:
The word problem for a recursively presented group can be partially solved in the following sense:
 
::Given a recursive presentation ''<math>P'' = ⟨''\langle X'' \, |'' \, R''⟩ \rangle</math> for a group ''<math>G''</math>, define:
:::<math>S=\{\langle u,v \rangle : u \text{ and } v \text{ are words in } X \text{ and } u=v \text{ in } G\ \}</math>
::then there is a partial recursive function ''f<submath>Pf_P</submath>'' such that:
:::<math>f_P(\langle u,v \rangle) =
\begin{cases}
Line 84 ⟶ 89:
\end{cases}</math>
 
More informally, there isexists an algorithm that halts if ''<math>u'' ='' v''</math>, but does not do so otherwise.
 
It follows that to solve the word problem for ''<math>P''</math> it is sufficient to construct a recursive function <math>g</math> such that:
::<math>g(\langle u,v \rangle) =
\begin{cases}
Line 93 ⟶ 98:
\end{cases}</math>
 
However ''<math>u'' ='' v''</math> in ''<math>G''</math> if and only if {{<math|>u v^{-1} =''uv''<sup>−1 1</supmath>=1}} in ''<math>G''</math>. It follows that to solve the word problem for ''<math>P''</math> it is sufficient to construct a recursive function ''<math>h''</math> such that:
::<math>h(x) =
\begin{cases}
Line 105 ⟶ 110:
:: '''Theorem:''' A finitely presented residually finite group has solvable word problem.
 
''Proof:'' Suppose ''<math>G'' = ⟨''\langle X'' \, |'' \, R''⟩ \rangle</math> is a finitely presented, residually finite group.
 
Let ''<math>S''</math> be the group of all permutations of '''N''', the natural numbers, <math>\mathbb{N}</math> that fixes all but finitely many numbers. thenThen:
# ''<math>S''</math> is [[locally finite group|locally finite]] and contains a copy of every finite group.
# The word problem in ''<math>S''</math> is solvable by calculating products of permutations.
# There is a recursive enumeration of all mappings of the finite set ''<math>X''</math> into ''<math>S''</math>.
# Since ''<math>G''</math> is residually finite, if ''<math>w''</math> is a word in the generators ''<math>X''</math> of ''<math>G''</math> then {{<math|''>w'' \neq 1}}</math> in ''<math>G''</math> if and only ofif some mapping of ''<math>X''</math> into ''<math>S''</math> induces a homomorphism such that {{<math|''>w'' \neq 1}}</math> in ''<math>S''</math>.
 
Given these facts, the algorithm defined by the following pseudocode:
 
'''For''' every mapping of X into S
Line 123 ⟶ 128:
'''End for'''
 
defines a recursive function ''<math>h''</math> such that:
 
::<math>h(x) =
Line 131 ⟶ 136:
\end{cases} </math>
 
This shows that ''<math>G''</math> has solvable word problem.
 
==Unsolvability of the uniform word problem==
Line 137 ⟶ 142:
The criterion given above, for the solvability of the word problem in a single group, can be extended by a straightforward argument. This gives the following criterion for the uniform solvability of the word problem for a class of finitely presented groups:
 
::To solve the uniform word problem for a class ''<math>K''</math> of groups, it is sufficient to find a recursive function {{tmath|f(P,w)}} that takes a finite presentation ''<math>P''</math> for a group ''<math>G''</math> and a word {{tmath|w}} in the generators of ''<math>G''</math>, such that whenever ''<math>G'' \in ''K''</math>:
:::<math>f(P,w) =
\begin{cases}
Line 144 ⟶ 149:
\end{cases}</math>
 
:: '''Boone-RogersBoone–Rogers Theorem:''' There is no uniform [[partial algorithm]] that solves the word problem in all finitely presented groups with solvable word problem.
 
In other words, the uniform word problem for the class of all finitely presented groups with solvable word problem is unsolvable. This has some interesting consequences. For instance, the [[Higman embedding theorem]] can be used to construct a group containing an isomorphic copy of every finitely presented group with solvable word problem. It seems natural to ask whether this group can have solvable word problem. But it is a consequence of the Boone-RogersBoone–Rogers result that:
 
:: '''Corollary:''' There is no universal solvable word problem group. That is, if ''<math>G''</math> is a finitely presented group that contains an isomorphic copy of every finitely presented group with solvable word problem, then ''<math>G''</math> itself must have unsolvable word problem.
 
'''Remark:''' Suppose ''<math>G'' = ⟨''\langle X'' \, |'' \, R''⟩ \rangle</math> is a finitely presented group with solvable word problem and ''<math>H''</math> is a finite subset of ''<math>G''</math>. Let ''H''<supmath>H^*</sup> = ⟨''\langle H''⟩ \rangle</math>, be the group generated by ''<math>H''</math>. Then the word problem in ''H''<supmath>H^*</supmath> is solvable: given two words ''<math>h, k''</math> in the generators ''<math>H''</math> of ''H''<supmath>H^*</supmath>, write them as words in ''<math>X''</math> and compare them using the solution to the word problem in ''<math>G''</math>. It is easy to think that this demonstrates a uniform solution of the word problem for the class ''<math>K''</math> (say) of finitely generated groups that can be embedded in ''<math>G''</math>. If this were the case, the non-existence of a universal solvable word problem group would follow easily from Boone-RogersBoone–Rogers. However, the solution just exhibited for the word problem for groups in ''<math>K''</math> is not uniform. To see this, consider a group ''<math>J'' = ⟨''\langle Y'' \, |'' \, T''⟩ \rangle \in ''K''</math>; in order to use the above argument to solve the word problem in ''<math>J''</math>, it is first necessary to exhibit a mapping ''<math>e : Y \to G''</math> that extends to an embedding ''e''<supmath>e^*</sup> : ''J'' \to ''G''</math>. If there were a recursive function that mapped (finitely generated) presentations of groups in ''<math>K''</math> to embeddings into ''<math>G''</math>, then a uniform solution of the word problem in ''<math>K''</math> could indeed be constructed. But there is no reason, in general, to suppose that such a recursive function exists. However, it turns out that, using a more sophisticated argument, the word problem in ''<math>J''</math> can be solved ''without'' using an embedding ''<math>e'' : ''J'' \to ''G''</math>. Instead an ''enumeration of homomorphisms'' is used, and since such an enumeration can be constructed uniformly, it results in a uniform solution to the word problem in ''<math>K''</math>.
 
===Proof that there is no universal solvable word problem group===
Suppose ''<math>G''</math> were a universal solvable word problem group. Given a finite presentation ''<math>P'' = ⟨''\langle X'' \, |''R⟩'' \, R \rangle</math> of a group ''<math>H''</math>, one can recursively enumerate all homomorphisms ''<math>h'' : ''H'' \to ''G''</math> by first enumerating all mappings ''h''<sup>†</supmath>h^\dagger : ''X'' \to ''G''</math>. Not all of these mappings extend to homomorphisms, but, since ''h''<sup>†</supmath>h^\dagger(''R'')</math> is finite, it is possible to distinguish between homomorphisms and non-homomorphisms, by using the solution to the word problem in ''<math>G''</math>. "Weeding out" non-homomorphisms gives the required recursive enumeration: ''h''<sub>1</submath>h_1, ''h''<sub>2</sub>h_2, ...\ldots, ''h<sub>nh_n, \ldots</submath>'', ... .
 
If ''<math>H''</math> has solvable word problem, then at least one of these homomorphisms must be an embedding. So given a word ''<math>w''</math> in the generators of ''<math>H''</math>:
 
::<math>\text{If}\ w\ne 1\ \text{in}\ H,\ h_n(w)\ne 1\ \text{in}\ G\ \text{for some}\ h_n </math>
Line 163 ⟶ 168:
 
'''Let''' ''n'' = 0
'''Let''' ''repeatable'' = TRUE
'''while''' (''repeatable'')
increase ''n'' by 1
'''if''' (solution to word problem in ''G'' reveals ''h<sub>n</sub>''(''w'') ≠ 1 in ''G'')
'''Let''' ''repeatable'' = FALSE
output 0.
 
Line 178 ⟶ 183:
\end{cases}</math>
 
The function ''<math>f''</math> clearly depends on the presentation ''<math>P''</math>. Considering it to be a function of the two variables, a recursive function {{tmath|f(P,w)}} has been constructed that takes a finite presentation ''<math>P''</math> for a group ''<math>H''</math> and a word ''<math>w''</math> in the generators of a group ''<math>G''</math>, such that whenever ''<math>G''</math> has soluble word problem:
 
::<math>f(P,w) =
Line 186 ⟶ 191:
\end{cases}</math>
 
But this uniformly solves the word problem for the class of all finitely presented groups with solvable word problem, contradicting Boone-RogersBoone–Rogers. This contradiction proves ''<math>G''</math> cannot exist.
 
==Algebraic structure and the word problem==
There are a number of results that relate solvability of the word problem and algebraic structure. The most significant of these is the [[Boone-HigmanBoone–Higman theorem]]:
 
::A finitely presented group has solvable word problem if and only if it can be embedded in a [[simple group]] that can be embedded in a finitely presented group.
Line 197 ⟶ 202:
The following has been proved by [[Bernhard Neumann]] and [[Angus Macintyre]]:
 
::A finitely presented group has solvable word problem if and only if it can be embedded in every [[algebraically closed group]].
 
What is remarkable about this is that the algebraically closed groups are so wild that none of them has a recursive presentation.
 
The oldest result relating algebraic structure to solvability of the word problem is [[Alexander Kuznetsov|Kuznetsov]]'s theorem:
 
::A recursively presented simple group ''<math>S''</math> has solvable word problem.
 
To prove this let ⟨''<math>\langle X'' |'' R''⟩ \rangle</math> be a recursive presentation for ''<math>S''</math>. Choose ''a'' nonidentity Selement such<math>a \in S</math>, that ''is, <math>a'' \neq 1</math> in ''<math>S''</math>.
 
If ''<math>w''</math> is a word on the generators ''<math>X''</math> of ''<math>S''</math>, then let:
 
::<math>S_w = \langle X | R\cup \{w\} \rangle.</math>
Line 223 ⟶ 228:
::<math>g(w, x) = f_{\langle X | R\cup \{w\} \rangle}(x).</math>
 
Then because the construction of ''<math>f''</math> was uniform, this is a recursive function of two variables.
 
It follows that: {{tmath|1=h(w)=g(w, a)}} is recursive. By construction:
Line 233 ⟶ 238:
\end{cases}</math>
 
Since ''<math>S''</math> is a simple group, its only quotient groups are itself and the trivial group. Since ''<math>a'' \neq 1</math> in ''<math>S''</math>, we see ''<math>a'' = 1</math> in ''S<submath>wS_w</submath>'' if and only if ''S<submath>wS_w</submath>'' is trivial if and only if ''<math>w'' \neq 1</math> in ''<math>S''</math>. Therefore:
 
::<math>h(w) =
Line 241 ⟶ 246:
\end{cases}</math>
 
The existence of such a function is sufficient to prove the word problem is solvable for ''<math>S''</math>.
 
This proof does not prove the existence of a uniform algorithm for solving the word problem for this class of groups. The non-uniformity resides in choosing a non-trivial element of the simple group. There is no reason to suppose that there is a recursive function that maps a presentation of a simple groups to a non-trivial element of the group. However, in the case of a finitely presented group we know that not all the generators can be trivial (Any individual generator could be, of course). Using this fact it is possible to modify the proof to show:
Line 258 ⟶ 263:
 
== References ==
* {{citation |first1=W.W. |last1=Boone |first2=F.B. |last2=Cannonito |first3=Roger C. |last3=Lyndon |title=Word problems : decision problems and the Burnside problem in group theory |publisher=North-Holland |date=1973 |isbn=9780720422719 |pages= |url=https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/71/suppl/C |series=Studies in logic and the foundations of mathematics |volume=71}}
* W. W. Boone, F. B. Cannonito, and [[Roger Lyndon|R. C. Lyndon]]. ''Word Problems: Decision Problem in Group Theory.'' Netherlands: North-Holland. 1973.
* {{cite journalcitation | last1 = Boone | first1 = W. W. | last2 = Higman | first2 = G. | year = 1974 | title = An algebraic characterization of the solvability of the word problem | journal = J. Austral. Math. Soc. | volume = 18 | pages = 41–53 | doi=10.1017/s1446788700019108| doi-access = free }}
* {{cite journalcitation | last1 = Boone | first1 = W. W. | last2 = Rogers Jr | first2 = H. | year = 1966 | title = On a problem of J. H. C. Whitehead and a problem of Alonzo Church | journal = Math. Scand. | volume = 19 | pages = 185–192 | doi=10.7146/math.scand.a-10808| doi-access = free }}
*{{Citation | last1=Borisov | first1=V. V. | title=Simple examples of groups with unsolvable word problem | mr=0260851 | year=1969 | journal=Akademiya Nauk SSSR. Matematicheskie Zametki | issn=0025-567X | volume=6 | pages=521–532}}
* {{Citation | last1=Collins | first1=Donald J. | title=Word and conjugacy problems in groups with only a few defining relations | mr=0263903 | year=1969 | journal=Zeitschrift für Mathematische Logik und Grundlagen der Mathematik | volume=15 | issue=20–22 | pages=305–324 | doi=10.1002/malq.19690152001}}
* {{Citation | last1=Collins | first1=Donald J. | title=On a group embedding theorem of V. V. Borisov | mr=0314998 | year=1972 | journal=[[London Mathematical Society|Bulletin of the London Mathematical Society]] | issn=0024-6093 | volume=4 | issue=2 | pages=145–147 | doi=10.1112/blms/4.2.145}}
* {{Citation | last1=Collins | first1=Donald J. | title=A simple presentation of a group with unsolvable word problem | mr=840121 | year=1986 | journal=Illinois Journal of Mathematics | issn=0019-2082 | volume=30 | issue=2 | pages=230–234 | doi=10.1215/ijm/1256044631| doi-access=free }}
*{{citation
* {{Citation | last1=Collins | first1=Donald J. | last2=Zieschang | first2=H. | title=Combinatorial group theory and fundamental groups | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | mr=1099152 | year=1990 | pages=166}}
| last1 = Collins | first1 = D. J.
*{{Citation | last1=Dehn | first1=Max | author1-link=Max Dehn | title=Über unendliche diskontinuierliche Gruppen | doi=10.1007/BF01456932 | mr=1511645 | year=1911 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=71 | issue=1 | pages=116–144|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0071&DMDID=DMDLOG_0013&L=1}}
| last2 = Zieschang | first2 = H.
*{{Citation | last1=Dehn | first1=Max | author1-link=Max Dehn | title=Transformation der Kurven auf zweiseitigen Flächen | doi=10.1007/BF01456725 | mr=1511705 | year=1912 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=72 | issue=3 | pages=413–421|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0072&DMDID=DMDLOG_0039&L=1}}
| contribution = Combinatorial group theory and fundamental groups
* A. V. Kuznetsov, "Algorithms as operations in algebraic systems", ''Izvestia Akad. Nauk SSSR Ser Mat'' (1958)
| doi = 10.1007/978-3-642-58013-0
* C. F. Miller. "Decision problems for groups -- survey and reflections." In ''Algorithms and Classification in Combinatorial Group Theory'', pages 1–60. Springer, 1991.
| isbn = 3-540-54700-2
*{{Citation | last1=Rotman | first1=Joseph | title=An introduction to the theory of groups | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | isbn=978-0-387-94285-8 | year=1994}}
| ___location = Berlin
* {{cite journal | last1 = Stillwell | first1 = J. | year = 1982 | title = The word problem and the isomorphism problem for groups | journal = Bulletin of the AMS | volume = 6 | pages = 33–56 | doi=10.1090/s0273-0979-1982-14963-1| doi-access = free }}
| mr = 1265270
| pages = 1–166
| publisher = Springer
| series = Encyclopaedia of Mathematical Sciences
| title = Algebra VIII: Combinatorial Group Theory, Applications to Geometry
| volume = 58
| year = 1993}}
*{{Citation | last1=Dehn | first1=Max | author1-link=Max Dehn | title=Über unendliche diskontinuierliche Gruppen | doi=10.1007/BF01456932 | mr=1511645 | year=1911 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=71 | issue=1 | pages=116–144| s2cid=123478582 |url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0071&DMDID=DMDLOG_0013&L=1}}
*{{Citation | last1=Dehn | first1=Max | author1-link=Max Dehn | title=Transformation der Kurven auf zweiseitigen Flächen | doi=10.1007/BF01456725 | mr=1511705 | year=1912 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=72 | issue=3 | pages=413–421| s2cid=122988176 |url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0072&DMDID=DMDLOG_0039&L=1}}
* {{citation |first=A. V. |last=Kuznetsov, "|title=Algorithms as operations in algebraic systems", ''|journal=Izvestia Akad. Nauk SSSR Ser Mat'' (|volume=13 |issue=3 |pages=81 |date=1958) |doi= |url=}}
* {{citation |first=C.F. |last=Miller |chapter=Decision Problems for Groups — Survey and Reflections |chapter-url=https://link.springer.com/chapter/10.1007/978-1-4613-9730-4_1 |title=Algorithms and Classification in Combinatorial Group Theory |series=Mathematical Sciences Research Institute Publications |publisher=Springer |date=1991 |volume=23 |isbn=978-1-4613-9730-4 |pages=1–60 |url= |doi=10.1007/978-1-4613-9730-4_1}}
* {{Citation | last1=Nyberg-Brodda | first1=Carl-Fredrik | title=The word problem for one-relation monoids: a survey | year=2021 | journal=[[Semigroup Forum]] | volume=103 | issue=2 | pages=297–355 | doi=10.1007/s00233-021-10216-8 | arxiv=2105.02853 | doi-access=free }}
*{{Citation | last1=Rotman | first1=Joseph | title=An introduction to the theory of groups | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | isbn=978-0-387-94285-8 | year=1994}}
* {{cite journalcitation | last1 = Stillwell | first1 = J. | year = 1982 | title = The word problem and the isomorphism problem for groups | journal = Bulletin of the AMS | volume = 6 | pages = 33–56 | doi=10.1090/s0273-0979-1982-14963-1| doi-access = free }}
 
{{DEFAULTSORT:Word Problem For Groups}}