Content deleted Content added
Link suggestions feature: 3 links added. |
fix caption |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1:
{{Short description|Mathematical function common in physics}}
[[File:Stretched exponential.svg|325px|thumb|'''Figure 1'''. Plot of {{math|1=''f''<sub>''β''</sub>(''t'') = ''e''<sup>−''t''<sup>''β''</sup></sup>}} for varying values of ''β'', with stretched exponentials ({{math|1=''β'' < 1}}) in reddish colors, compressed exponentials ({{math|1=''β'' > 1}}) in green and blue colors, and the standard exponential function in yellow. The [[degenerate case]]s {{math|1=''β'' → 0}} and {{math|1=''β'' → +∞}} are marked in dotted lines.]]
[[Image:Pibmasterplot.png|325px|thumb|'''Figure 1'''. Illustration of a stretched exponential fit (with ''β''=0.52) to an empirical master curve. For comparison, a least squares single and a [[Double exponential function|double exponential]] fit are also shown. The data are rotational [[anisotropy]] of [[anthracene]] in [[polyisobutylene]] of several [[molecular mass]]es. The plots have been made to overlap by dividing time (''t'') by the respective characteristic [[time constant]].]]▼
The '''stretched exponential function''' <math display="block">f_\beta (t) = e^{ -t^\beta }</math> is obtained by inserting a fractional [[power law]] into the [[exponential function]]. In most applications, it is meaningful only for arguments {{mvar|t}} between 0 and +∞. With {{math|1=''β'' = 1}}, the usual exponential function is recovered. With a ''stretching exponent'' ''β'' between 0 and 1, the graph of log ''f'' versus ''t'' is characteristically ''stretched'', hence the name of the function. The '''compressed exponential function''' (with {{math|1=''β'' > 1}}) has less practical importance, with the notable exceptions of {{math|1=''β'' = 2}}, which gives the [[normal distribution]], and of compressed exponential relaxation in the dynamics of [[amorphous solids]].<ref>{{Cite journal |last1=Trachenko |first1=K. |last2=Zaccone |first2=A.|date=2021-06-14 |title=Slow stretched-exponential and fast compressed-exponential relaxation from local event dynamics |url=https://iopscience.iop.org/article/10.1088/1361-648X/ac04cd |journal=Journal of Physics: Condensed Matter |language=en |volume=33 |issue= |pages=315101 |doi= 10.1088/1361-648X/ac04cd|bibcode= |issn=0953-8984|arxiv=2010.10440 }}</ref>
Line 171:
== History and further applications ==
▲[[Image:Pibmasterplot.png|325px|thumb|'''Figure
As said in the introduction, the stretched exponential was introduced by the [[Germans|German]] [[physicist]] [[Rudolf Kohlrausch]] in 1854 to describe the discharge of a capacitor ([[Leyden jar]]) that used glass as dielectric medium. The next documented usage is by [[Friedrich Kohlrausch (physicist)|Friedrich Kohlrausch]], son of Rudolf, to describe torsional relaxation. [[A. Werner]] used it in 1907 to describe complex luminescence decays; [[Theodor Förster]] in 1949 as the fluorescence decay law of electronic energy donors.{{Citation needed|date=May 2023}}
Line 229 ⟶ 231:
}}</ref>
=== Wireless
In wireless communications, a scaled version of the stretched exponential function has been shown to appear in the Laplace Transform for the interference power <math>I</math> when the transmitters' locations are modeled as a 2D [[Poisson point process|Poisson Point Process]] with no exclusion region around the receiver.<ref>{{cite book
Line 247 ⟶ 249:
The same reference also shows how to obtain the inverse Laplace Transform for the stretched exponential <math>\exp\left(-s^\beta \right)</math> for higher order integer <math>\beta = \beta_q \beta_b </math> from lower order integers <math>\beta_a</math> and <math>\beta_b</math>.{{Citation needed|date=May 2023}}
=== Internet
The stretched exponential has been used to characterize Internet media accessing patterns, such as YouTube and other stable [[streaming media]] sites.<ref>{{Cite conference |author= Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, and Xiaodong Zhang| title="The Stretched Exponential Distribution of Internet Media Access Patterns" |conference= PODC' 08| pages=283–294|year=2008 | doi=10.1145/1400751.1400789 }}</ref> The commonly agreed power-law accessing patterns of Web workloads mainly reflect text-based content Web workloads, such as daily updated news sites.<ref>{{cite journal |last1=Adamic|first1=Lada A. |last2=Bernardo A. |first2=Huberman |year=2000 |title=Power-Law Distribution of the World Wide Web |url= |journal=Science |volume=287 |issue=5461 |pages=2115-2115 |doi=10.1126/science.287.5461.2115a}}</ref>
Line 257 ⟶ 259:
* J. Wuttke: [http://apps.jcns.fz-juelich.de/kww libkww] C library to compute the Fourier transform of the stretched exponential function
[[Category:Exponentials]]
|