State-transition matrix: Difference between revisions

Content deleted Content added
Undid revision 938342761 by Hammadhassan135 (talk). It was correct as it was.
improve categories, short description, lead, and formatting
 
(19 intermediate revisions by 12 users not shown)
Line 1:
{{Short description|Describes state evolution of a linear system}}
{{Technical|date=December 2018}}
 
In [[control theory]] and [[dynamical systems theory]], the '''state-transition matrix''' is a [[matrix whosefunction]] productthat withdescribes how the [[State space representation|state]] vectorof <math>x</math>a at[[linear ansystem]] initialchanges over time. <math>t_0</math>Essentially, givesif <math>x</math>the system's state is known at aan laterinitial time <math>tt_0</math>., Thethe state-transition matrix canallows befor usedthe tocalculation obtainof the generalstate solutionat ofany linearfuture dynamicaltime systems<math>t</math>.
 
The matrix is used to find the general solution to the homogeneous [[linear differential equation]] <math>\dot{\mathbf{x}}(t) = \mathbf{A}(t) \mathbf{x}(t)</math> and is also a key component in finding the full solution for the non-homogeneous (input-driven) case.
 
For [[Linear time-invariant system|linear time-invariant (LTI) systems]], where the matrix <math>\mathbf{A}</math> is constant, the state-transition matrix is the [[matrix exponential]] <math>e^{\mathbf{A}(t-t_0)}</math>. In the more complex [[Time-variant system|time-variant]] case, where <math>\mathbf{A}(t)</math> can change over time, there is no simple formula, and the matrix is typically found by calculating the [[Peano–Baker series]].
 
==Linear systems solutions==
The state-transition matrix is used to find the solution to a general [[state-space representation]] of a [[linear system]] in the following form
: <math>\dot{\mathbf{x}}(t) = \mathbf{A}(t) \mathbf{x}(t) + \mathbf{B}(t) \mathbf{u}(t) , \;\mathbf{x}(t_0) = \mathbf{x}_0 </math>,
where <math>\mathbf{x}(t)</math> are the states of the system, <math>\mathbf{u}(t)</math> is the input signal, <math>\mathbf{A}(t)</math> and <math>\mathbf{B}(t)</math> are [[matrix function]]s, and <math>\mathbf{x}_0</math> is the initial condition at <math>t_0</math>. Using the state-transition matrix <math>\mathbf{\Phi}(t, \tau)</math>, the solution is given by:<ref name=baaschl>{{cite journal|last1=Baake|first1=Michael|last2=Schlaegel|first2=Ulrike|title=The Peano Baker Series|journal=Proceedings of the Steklov Institute of Mathematics|year=2011|volume=275|pages=155–159|doi=10.1134/S0081543811080098|s2cid=119133539}}</ref><ref name=rugh>{{cite book|last1=Rugh|first1=Wilson|title=Linear System Theory|date=1996|publisher=Prentice Hall|___location=Upper Saddle River, NJ | isbn = 0-13-441205-2}}</ref>
: <math>\mathbf{x}(t)= \mathbf{\Phi} (t, t_0)\mathbf{x}(t_0)+\int_{t_0}^t \mathbf{\Phi}(t, \tau)\mathbf{B}(\tau)\mathbf{u}(\tau)d\tau</math>
 
The first term is known as the '''zero-input response''' and represents how the system's state would evolve in the absence of any input. The second term is known as the '''zero-state response''' and defines how the inputs impact the system.
 
==Peano–Baker series==
The most general transition matrix is given by a [[product integral]], referred to as the '''Peano–Baker series'''
:<math>\begin{align}
:<math> \mathbf{\Phi}(t,\tau) = \mathbf{I} + \int_\tau^t\mathbf{A}(\sigma_1)\,d\sigma_1 + \int_\tau^t\mathbf{A}(\sigma_1)\int_\tau^{\sigma_1}\mathbf{A}(\sigma_2)\,d\sigma_2\,d\sigma_1 + \int_\tau^t\mathbf{A}(\sigma_1)\int_\tau^{\sigma_1}\mathbf{A}(\sigma_2)\int_\tau^{\sigma_2}\mathbf{A}(\sigma_3)\,d\sigma_3\,d\sigma_2\,d\sigma_1 + ...</math>
: <math>\mathbf{\Phi}(t, \tau)\equiv = \mathbf{UI}( &+ \int_\tau^t)\mathbf{U}^{-1A}(\tausigma_1)</math>\,d\sigma_1 \\
where <math>\mathbf{I}</math> is the [[identity matrix]]. This matrix converges uniformly and absolutely to a solution that exists and is unique.<ref name=rugh />
&+ \int_\tau^t\mathbf{A}(\sigma_1)\int_\tau^{\sigma_1}\mathbf{A}(\sigma_2)\,d\sigma_2\,d\sigma_1 \\
:<math> \mathbf{\Phi}(t,\tau) = \mathbf{I} + \int_\tau^t\mathbf{A}(\sigma_1)\,d\sigma_1 + \int_\tau^t\mathbf{A}(\sigma_1)\int_\tau^{\sigma_1}\mathbf{A}(\sigma_2)\,d\sigma_2\,d\sigma_1 &+ \int_\tau^t\mathbf{A}(\sigma_1)\int_\tau^{\sigma_1}\mathbf{A}(\sigma_2)\int_\tau^{\sigma_2}\mathbf{A}(\sigma_3)\,d\sigma_3\,d\sigma_2\,d\sigma_1 + ...</math>\\
&+ \cdots
\end{align}</math>
where <math>\mathbf{I}</math> is the [[identity matrix]]. This matrix converges uniformly and absolutely to a solution that exists and is unique.<ref name=rugh /> The series has a formal sum that can be written as
:<math>\mathbf{x\Phi}(t,\tau) = \mathbf{exp \Phimathcal{T}(t, \int_\tau)^t\mathbf{xA}(\tausigma)\,d\sigma</math>
where <math>\mathcal{T}</math> is the [[time-ordering]] operator, used to ensure that the repeated [[product integral]] is in proper order. The [[Magnus expansion]] provides a means for evaluating this product.
 
==Other properties==
The state transition matrix <math> \mathbf{\Phi}</math> satisfies the following relationships:. These relationships are generic to the [[product integral]].
 
1.# It is continuous and has continuous derivatives.
2,# It is never singular; in fact <math>\mathbf{\Phi}^{-1}(t, \tau) = \mathbf{ \Phi}(\tau, t)</math> and <math>\mathbf{\Phi}^{-1}(t, \tau)\mathbf{\Phi}(t, \tau) = \mathbf I</math>, where <math>\mathbf I</math> is the identity matrix.
 
3.# <math>\mathbf{\Phi}(t, t) = \mathbf I</math> for all <math>t</math> .<ref>{{cite book|first=Roger W.|last=Brockett|title=Finite Dimensional Linear Systems|publisher=John Wiley & Sons|year=1970|isbn=978-0-471-10585-5}}</ref>
2, It is never singular; in fact <math>\mathbf{\Phi}^{-1}(t, \tau) = \mathbf{ \Phi}(\tau, t)</math> and <math>\mathbf{\Phi}^{-1}(t, \tau)\mathbf{\Phi}(t, \tau) = I</math>, where <math>I</math> is the identity matrix.
4.# <math>\mathbf{\Phi}(t_2, t_1)\mathbf{\Phi}(t_1, t_0) = \mathbf{\Phi}(t_2, t_0)</math> for all <math>t_0 \leq t_1 \leq t_2</math>.
 
5.# It satisfies the differential equation <math>\frac{\partial \mathbf{\Phi}(t, t_0)}{\partial t} = \mathbf{A}(t)\mathbf{\Phi}(t, t_0)</math> with initial conditions <math>\mathbf{\Phi}(t_0, t_0) = \mathbf I</math>.
3. <math>\mathbf{\Phi}(t, t) = I</math> for all <math>t</math> .<ref>{{cite book|first=Roger W.|last=Brockett|title=Finite Dimensional Linear Systems|publisher=John Wiley & Sons|year=1970|isbn=978-0-471-10585-5}}</ref>
# The state-transition matrix <math>\mathbf{\Phi}(t, \tau)</math>, given by <math>\mathbf{\Phi}(t, \tau)\equiv\mathbf{U}(t)\mathbf{U}^{-1}(\tau)</math> where the <math>n \times n</math> matrix <math>\mathbf{U}(t)</math> is the [[Fundamental matrix (linear differential equation)|fundamental solution matrix]] that satisfies <math>\dot{\mathbf{U}}(t)=\mathbf{A}(t)\mathbf{U}(t)</math> with initial condition <math>\mathbf{U}(t_0) = \mathbf I</math>.
 
7.# Given the state <math>\mathbf{x}(\tau)</math> at any time <math>\tau</math>, the state at any other time <math>t</math> is given by the mapping<math>\mathbf{x}(t)=\mathbf{\Phi}(t, \tau)\mathbf{x}(\tau)</math>
4. <math>\mathbf{\Phi}(t_2, t_1)\mathbf{\Phi}(t_1, t_0) = \mathbf{\Phi}(t_2, t_0)</math> for all <math>t_0 \leq t_1 \leq t_2</math>.
 
5. It satisfies the differential equation <math>\frac{\partial \mathbf{\Phi}(t, t_0)}{\partial t} = \mathbf{A}(t)\mathbf{\Phi}(t, t_0)</math> with initial conditions <math>\mathbf{\Phi}(t_0, t_0) = I</math>.
 
6. The state-transition matrix <math>\mathbf{\Phi}(t, \tau)</math>, given by
: <math>\mathbf{\Phi}(t, \tau)\equiv\mathbf{U}(t)\mathbf{U}^{-1}(\tau)</math>
where the <math>n \times n</math> matrix <math>\mathbf{U}(t)</math> is the [[Fundamental matrix (linear differential equation)|fundamental solution matrix]] that satisfies
: <math>\dot{\mathbf{U}}(t)=\mathbf{A}(t)\mathbf{U}(t)</math> with initial condition <math>\mathbf{U}(t_0) = I</math>.
 
7. Given the state <math>\mathbf{x}(\tau)</math> at any time <math>\tau</math>, the state at any other time <math>t</math> is given by the mapping
:<math>\mathbf{x}(t)=\mathbf{\Phi}(t, \tau)\mathbf{x}(\tau)</math>
 
==Estimation of the state-transition matrix==
 
In the [[time-invariant]] case, we can define <math> \mathbf{\Phi}</math>;, using the [[matrix exponential]], as <math>\mathbf{\Phi}(t, t_0) = e^{\mathbf{A}(t - t_0)}</math>. <ref>{{cite journal |last1=Reyneke |first1=Pieter V. |title=Polynomial Filtering: To any degree on irregularly sampled data |journal=Automatika |date=2012 |volume=53 |issue=4 |pages=382–397|doi=10.7305/automatika.53-4.248 |s2cid=40282943 |url=http://hrcak.srce.hr/file/138435 |doi-access=free |hdl=2263/21017 |hdl-access=free }}</ref>
 
In the [[time-variant]] case, the state-transition matrix <math>\mathbf{\Phi}(t, t_0)</math> can be estimated from the solutions of the differential equation <math>\dot{\mathbf{u}}(t)=\mathbf{A}(t)\mathbf{u}(t)</math> with initial conditions <math>\mathbf{u}(t_0)</math> given by <math>[1,\ 0,\ \ldots,\ 0]^\mathrm{T}</math>, <math>[0,\ 1,\ \ldots,\ 0]^\mathrm{T}</math>, ..., <math>[0,\ 0,\ \ldots,\ 1]^\mathrm{T}</math>. The corresponding solutions provide the <math>n</math> columns of matrix <math>\mathbf{\Phi}(t, t_0)</math>. Now, from property 4, <math>\mathbf{\Phi}(t, \tau) = \mathbf{\Phi}(t, t_0)\mathbf{\Phi}(\tau, t_0)^{-1}</math> for all <math>t_0 \leq \tau \leq t</math>. The state-transition matrix must be determined before analysis on the time-varying solution can continue.
<math>\mathbf{\Phi}(t, \tau) = \mathbf{\Phi}(t, t_0)\mathbf{\Phi}(\tau, t_0)^{-1}</math> for all <math>t_0 \leq \tau \leq t</math>. The state-transition matrix must be determined before analysis on the time-varying solution can continue.
 
== See also ==
Line 60 ⟶ 61:
| volume = 275
| pages = 155–159
| doi = 10.1134/S0081543811080098
}}
| s2cid = 119133539
}}
* {{cite book
| author = Brogan, W.L.
Line 76 ⟶ 79:
 
[[Category:Classical control theory]]
[[Category:Dynamical systems]]
[[Category:Matrix theory]]