Content deleted Content added
OsmanAbram (talk | contribs) mNo edit summary |
|||
(10 intermediate revisions by 7 users not shown) | |||
Line 1:
[[Image:Urbain Le Verrier.jpg|220px|thumb|right|[[Urbain Le Verrier]] (1811–1877)<br> The discoverer of [[Neptune]].]]
In mathematics ([[linear algebra]]), the '''Faddeev–LeVerrier algorithm''' is a [[Recurrence relation|recursive]] method to calculate the coefficients of the [[characteristic polynomial]] <math>p_A(\lambda)=\det (\lambda I_n - A)</math> of a square [[Matrix (mathematics)|matrix]], {{mvar|A}}, named after
The algorithm has been independently rediscovered several times
{{cite book|first=Alston S.|last=Householder|title=The Theory of Matrices in Numerical Analysis |publisher=Dover Books on Mathematics|year=2006|author-link=Alston Scott Householder | isbn=0486449726}}</ref> An elegant shortcut to the proof, bypassing [[Newton polynomial]]s, was introduced by Hou.<ref>Hou, S. H. (1998). [http://epubs.siam.org/doi/pdf/10.1137/S003614459732076X "Classroom Note: A Simple Proof of the Leverrier--Faddeev Characteristic Polynomial Algorithm"] ''SIAM review'' '''40(3)''' 706-709, {{doi|10.1137/S003614459732076X}} .</ref> The bulk of the presentation here follows Gantmacher, p. 88.<ref>{{cite book| last= Gantmacher|first=F.R. | title=The Theory of Matrices |year=1960| publisher= Chelsea Publishing|___location= NY | isbn = 0-8218-1376-5 }}</ref>)
Line 9:
The objective is to calculate the coefficients {{math|''c<sub>k</sub>''}} of the characteristic polynomial of the {{math|''n''×''n''}} matrix {{mvar|A}},
::<math>p_A(\lambda)\equiv \det(\lambda I_n-A)=\sum_{k=0}^{n} c_k \lambda^k~,</math>
where, evidently,
The coefficients
:<math> \begin{align}
M_0 &\equiv 0 & c_n &= 1 \qquad &(k=0) \\
Line 25:
:<math>M_3= A^2-A\mathrm{tr} A -\frac{1}{2}\Bigl(\mathrm{tr} A^2 -(\mathrm{tr} A)^2\Bigr) I,</math>
::<math>c_{n-3}=- \tfrac{1}{6}\Bigl( (\operatorname{tr}A)^3-3\operatorname{tr}(A^2)(\operatorname{tr}A)+2\operatorname{tr}(A^3)\Bigr)=-\frac{1}{3}(c_n \mathrm{tr} A^3+c_{n-1} \mathrm{tr} A^2 +c_{n-2}\mathrm{tr} A); </math>
etc.,<ref>Zadeh, Lotfi A. and Desoer, Charles A. (1963, 2008). ''Linear System Theory: The State Space Approach'' (Mc Graw-Hill; Dover Civil and Mechanical Engineering) {{ISBN|9780486466637}}
</ref><ref>Abdeljaoued, Jounaidi and Lombardi, Henri (2004). ''Méthodes matricielles - Introduction à la complexité algébrique'',
(Mathématiques et Applications, 42) Springer, {{ISBN|3540202471}} .</ref>
Line 88:
==An equivalent but distinct expression==
A compact determinant of an {{mvar|m}}×{{mvar|m}}-matrix solution for the above Jacobi's formula may alternatively determine the coefficients {{mvar|c}},<ref>Brown, Lowell S. (1994). ''Quantum Field Theory'', Cambridge University Press. {{ISBN|978-0-521-46946-3}}, p. 54; Also see, Curtright, T. L., Fairlie, D. B. and Alshal, H. (2012). "A Galileon Primer", arXiv:1212.6972
:<math>c_{n-m} = \frac{(-1)^m}{m!}
Line 100:
* [[Characteristic polynomial]]
* [[Horner's method]]
* [[Fredholm determinant]]
|