Content deleted Content added
→top: style, grammar, formatting |
|||
(9 intermediate revisions by 7 users not shown) | |||
Line 1:
[[Image:Urbain Le Verrier.jpg|220px|thumb|right|[[Urbain Le Verrier]] (1811–1877)<br> The discoverer of [[Neptune]].]]
In mathematics ([[linear algebra]]), the '''Faddeev–LeVerrier algorithm''' is a [[Recurrence relation|recursive]] method to calculate the coefficients of the [[characteristic polynomial]] <math>p_A(\lambda)=\det (\lambda I_n - A)</math> of a square [[Matrix (mathematics)|matrix]], {{mvar|A}}, named after [[Dmitry Konstantinovich Faddeev]] and [[Urbain Le Verrier]]. Calculation of this polynomial yields the [[eigenvalue]]s of {{mvar|A}} as its roots; as a matrix polynomial in the matrix {{mvar|A}} itself, it vanishes by the [[Cayley–Hamilton theorem]]. Computing the characteristic polynomial directly from the definition of the determinant is computationally cumbersome
The algorithm has been independently rediscovered several times in different forms. It was first published in 1840 by [[Urbain Le Verrier]], subsequently redeveloped by P. Horst, [[Jean-Marie Souriau]], in its present form here by Faddeev and Sominsky, and further by J. S. Frame, and others.<ref>[[Urbain Le Verrier]]: ''Sur les variations séculaires des éléments des orbites pour les sept planètes principales'', ''J. de Math.'' (1) '''5''', 230 (1840), [http://gallica.bnf.fr/ark:/12148/bpt6k163849/f228n35.capture# Online]</ref><ref>Paul Horst: ''A method of determining the coefficients of a characteristic equation''. ''Ann. Math. Stat.'' '''6''' 83-84 (1935), {{doi|10.1214/aoms/1177732612}}</ref><ref>[[Jean-Marie Souriau]], ''Une méthode pour la décomposition spectrale et l'inversion des matrices'', ''Comptes Rend.'' '''227''', 1010-1011 (1948).</ref><ref>D. K. Faddeev, and I. S. Sominsky, ''Sbornik zadatch po vyshej algebra'' ([http://www.isinj.com/aime/Problems%20in%20Higher%20Algebra%20-%20Faddeev,%20Sominskii%20(MIR,1972).pdf Problems in higher algebra] {{Webarchive|url=https://web.archive.org/web/20160309010057/http://www.isinj.com/aime/Problems%20in%20Higher%20Algebra%20-%20Faddeev,%20Sominskii%20(MIR,1972).pdf |date=2016-03-09 }}, Mir publishers, 1972), Moscow-Leningrad (1949). Problem '''979'''.</ref><ref>J. S. Frame: ''A simple recursion formula for inverting a matrix (abstract)'', ''Bull. Am. Math. Soc.'' '''55''' 1045 (1949), {{doi|10.1090/S0002-9904-1949-09310-2}}</ref> (For historical points, see Householder.<ref>
{{cite book|first=Alston S.|last=Householder|title=The Theory of Matrices in Numerical Analysis |publisher=Dover Books on Mathematics|year=2006|author-link=Alston Scott Householder | isbn=0486449726}}</ref> An elegant shortcut to the proof, bypassing [[Newton polynomial]]s, was introduced by Hou.<ref>Hou, S. H. (1998). [http://epubs.siam.org/doi/pdf/10.1137/S003614459732076X "Classroom Note: A Simple Proof of the Leverrier--Faddeev Characteristic Polynomial Algorithm"] ''SIAM review'' '''40(3)''' 706-709, {{doi|10.1137/S003614459732076X}} .</ref> The bulk of the presentation here follows Gantmacher, p. 88.<ref>{{cite book| last= Gantmacher|first=F.R. | title=The Theory of Matrices |year=1960| publisher= Chelsea Publishing|___location= NY | isbn = 0-8218-1376-5 }}</ref>)
Line 9:
The objective is to calculate the coefficients {{math|''c<sub>k</sub>''}} of the characteristic polynomial of the {{math|''n''×''n''}} matrix {{mvar|A}},
::<math>p_A(\lambda)\equiv \det(\lambda I_n-A)=\sum_{k=0}^{n} c_k \lambda^k~,</math>
where, evidently,
The coefficients
:<math> \begin{align}
M_0 &\equiv 0 & c_n &= 1 \qquad &(k=0) \\
Line 25:
:<math>M_3= A^2-A\mathrm{tr} A -\frac{1}{2}\Bigl(\mathrm{tr} A^2 -(\mathrm{tr} A)^2\Bigr) I,</math>
::<math>c_{n-3}=- \tfrac{1}{6}\Bigl( (\operatorname{tr}A)^3-3\operatorname{tr}(A^2)(\operatorname{tr}A)+2\operatorname{tr}(A^3)\Bigr)=-\frac{1}{3}(c_n \mathrm{tr} A^3+c_{n-1} \mathrm{tr} A^2 +c_{n-2}\mathrm{tr} A); </math>
etc.,<ref>Zadeh, Lotfi A. and Desoer, Charles A. (1963, 2008). ''Linear System Theory: The State Space Approach'' (Mc Graw-Hill; Dover Civil and Mechanical Engineering) {{ISBN|9780486466637}}
</ref><ref>Abdeljaoued, Jounaidi and Lombardi, Henri (2004). ''Méthodes matricielles - Introduction à la complexité algébrique'',
(Mathématiques et Applications, 42) Springer, {{ISBN|3540202471}} .</ref>
Line 88:
==An equivalent but distinct expression==
A compact determinant of an {{mvar|m}}×{{mvar|m}}-matrix solution for the above Jacobi's formula may alternatively determine the coefficients {{mvar|c}},<ref>Brown, Lowell S. (1994). ''Quantum Field Theory'', Cambridge University Press. {{ISBN|978-0-521-46946-3}}, p. 54; Also see, Curtright, T. L., Fairlie, D. B. and Alshal, H. (2012). "A Galileon Primer", arXiv:1212.6972
:<math>c_{n-m} = \frac{(-1)^m}{m!}
Line 100:
* [[Characteristic polynomial]]
* [[Horner's method]]
* [[Fredholm determinant]]
|