Content deleted Content added
m →Usage in science and engineering: I shouldn't use Big-O notation without link to that page. |
m Reverted edit by 108.147.198.68 (talk) to last version by 49.194.28.200 |
||
(13 intermediate revisions by 9 users not shown) | |||
Line 1:
{{Short description|Expressions for approximation accuracy}}
{{original research|date=November 2024}}
{{Order-of-approx}}
{{unclear|date=March 2016}}
In
==Usage in science and engineering==
Line 14 ⟶ 15:
In the case of a [[smooth function]], the ''n''th-order approximation is a [[polynomial]] of [[degree of a polynomial|degree]] ''n'', which is obtained by truncating the Taylor series to this degree. The formal usage of ''order of approximation'' corresponds to the omission of some terms of the [[Series_(mathematics)|series]] used in the [[Series_expansion|expansion]]. This affects [[Accuracy_and_precision|accuracy]]. The error usually varies within the interval. Thus the terms (''zeroth'', ''first'', ''second,'' etc.) used above meaning do not directly give information about [[percent error]] or [[significant figures]]. For example, in the [[w:Taylor's theorem|Taylor series]] expansion of the [[Exponential_function#Formal_definition|exponential function]],
<math display="block">e^x=\underbrace{1}_{0^\text{th}}+\underbrace{x}_{1^\text{st}}+\underbrace{\frac{x^2}{2!}}_{2^\text{nd}}+\underbrace{\frac{x^3}{3!}}_{3^\text{rd}} + \underbrace{\frac{x^4}{4!}}_{4^\text{th}} + \ldots\;, </math>
the zeroth-order term is <math>1;</math> the first-order term is <math>x,</math> second-order is <math>x^2/2,</math> and so forth. If <math>|x|<1,</math> each higher order term is smaller than the previous. If <math>|x
<math display="block">e^x\approx 1+x, </math>
is often sufficient. But at <math>x=1,</math> the first-order term, <math>x,</math> is not smaller than the zeroth-order term, <math>1.</math> And at <math>x=2,</math> even the second-order term, <math>2^3/3!=4/3,\,</math> is greater than the zeroth-order term.
=== Zeroth-order ===
''Zeroth-order approximation'' is the term [[scientist]]s use for a first rough answer. Many [[Approximation#Science|simplifying assumptions]] are made, and when a number is needed, an order-of-magnitude answer (or zero [[significant figure]]s) is often given. For example,
A zeroth-order approximation of a [[function (mathematics)|function]] (that is, [[mathematics|mathematically]] determining a [[formula]] to fit multiple [[data point]]s) will be [[Constant (mathematics)|constant]], or a flat [[line (mathematics)|line]] with no [[slope]]: a polynomial of degree 0. For example,
Line 38 ⟶ 39:
: <math>y \sim x + 2.67.</math>
One should be careful though, because the multiplicative function will be defined for the whole interval. If only three data points are available, one has no knowledge about the rest of the [[Interval (mathematics)|interval]], which may be a large part of it. This means that ''y'' could have another component which equals 0 at the ends and in the middle of the interval. A number of functions having this property are known, for example ''y'' = sin π''x''. [[Taylor series]]
===First-order===
Line 51 ⟶ 52:
is an approximate fit to the data.
In this example there is a zeroth-order approximation that is the same as the first-order, but the method of getting there is different; i.e. a wild stab in the dark at a relationship happened to be as good as an "educated guess".
===Second-order===
''Second-order approximation'' is the term scientists use for a decent-quality answer. Few simplifying assumptions are made, and when a number is needed, an answer with two or more significant figures ("the town has {{val|3.9|e=3}}, or ''thirty-nine hundred'', residents") is generally given
A second-order approximation of a function (that is, mathematically determining a formula to fit multiple data points) will be a [[quadratic polynomial]], geometrically, a [[parabola]]: a polynomial of degree 2. For example:
Line 78:
* [[Chapman–Enskog_theory#Mathematical_Formulation | Chapman–Enskog method]]
* [[Big O notation]]
* [[Order of accuracy]]
==References==
|