Content deleted Content added
Undid revision 1288155359 by 1.187.216.59 (talk) |
→To arbitrary bases: refined congruence phrasing |
||
(7 intermediate revisions by 6 users not shown) | |||
Line 118:
Pascal's triangle has many properties and contains many patterns of numbers.
[[File:Pascal's Triangle animated binary rows.gif|thumb|upright=1|Each frame represents a row in Pascal's triangle. Each column of pixels is a number in binary with the least significant bit at the bottom. Light pixels represent 1 and dark pixels 0.]]
[[File:pascal_triangle_compositions.svg|thumb|upright=1|The numbers of [[composition (combinatorics)|compositions]] of ''n''
=== Rows ===
Line 451:
| last = Kallós | first = Gábor
| issue = 1
| journal = Annales Mathématiques Blaise Pascal
| pages = 1–15
| title = A generalization of Pascal's triangle using powers of base numbers
Line 458:
| doi = 10.5802/ambp.211
| url = https://ambp.centre-mersenne.org/item/10.5802/ambp.211.pdf
}}.</ref> as demonstrated [[#Binomial expansions|above]]. Thus, when the entries of the row are concatenated and read in radix <math>a</math> they form the numerical equivalent of <math>(a + 1)^{n} = 11^{n}_{a}</math>. If <math>c = a + 1</math> for <math>c < 0</math>, then the theorem [[Negative base|holds]] for <math>a
| display-authors = etal
| last = Hilton | first = P.
|