Biconjugate gradient stabilized method: Difference between revisions

Content deleted Content added
Unpreconditioned BiCGSTAB: Added reference to paper showing numerical impact of choosing a different rhat0
m Reverted edit by 186.177.184.151 (talk) to last version by Weberjoh
 
(5 intermediate revisions by 5 users not shown)
Line 1:
{{Short description|Concept in mathematics}}
{{Technical|date=May 2015}}
 
Line 25 ⟶ 26:
## {{math|<var>β</var> {{=}} (<var>ρ<sub>i</sub></var>/<var>ρ</var><sub><var>i</var>−1</sub>)(<var>α</var>/<var>ω</var>)}}
## {{math|<var>'''p'''<sub>i</sub></var> {{=}} '''<var>r</var>'''<sub><var>i</var></sub> + <var>β</var>('''<var>p</var>'''<sub><var>i</var>−1</sub> − <var>ω</var>'''<var>v</var>''')}}
In some cases, choosing the vector {{math|'''<var>r̂</var>'''<sub>0</sub>}} randomly improves numerical stability.<ref>{{Cite journal |last=Schoutrop |first=Chris |last2=Boonkkamp |first2=Jan ten Thije |last3=Dijk |first3=Jan van |date=July 2022-06 |title=Reliability Investigation of BiCGStab and IDR Solvers for the Advection-Diffusion-Reaction Equation |url=https://doi.org/10.4208/cicp.OA-2021-0182 |journal=Communications in Computational Physics |language=en |volume=32 |issue=1 |pages=156–188 |doi=10.4208/cicp.oa-2021-0182 |issn=1815-2406}}</ref>.
 
===Preconditioned BiCGSTAB===
Line 99 ⟶ 100:
which entails the necessity of a recurrence relation for {{math|<var>Q<sub>i</sub></var>('''<var>A</var>''')<var>T<sub>i</sub></var>('''<var>A</var>''')'''<var>r</var>'''<sub>0</sub>}}. This can also be derived from the BiCG relations:
 
:{{math|<var>Q<sub>i</sub></var>('''<var>A</var>''')<var>T<sub>i</sub></var>('''<var>A</var>''')'''<var>r</var>'''<sub>0</sub> {{=}} <var>Q<sub>i</sub></var>('''<var>A</var>''')<var>P<sub>i</sub></var>('''<var>A</var>''')'''<var>r</var>'''<sub>0</sub> + <var>β</var><sub><var>i</var>+1</sub>('''<var>I</var>''' − <var>ω<sub>i</sub>'''A'''</var>)<var>Q</var><sub><var>i</var>−1</sub>('''<var>A</var>''')<var>PT</var><sub><var>i</var>−1</sub>('''<var>A</var>''')'''<var>r</var>'''<sub>0</sub>}}.
 
Similarly to defining {{math|<var>'''r̃'''<sub>i</sub></var>}}, BiCGSTAB defines
Line 168 ⟶ 169:
 
==References==
{{reflist}}
* {{Cite journal | doi = 10.1137/0913035 | title = Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems | year = 1992 | last1 = Van der Vorst | first1 = H. A. | journal = [[SIAM Journal on Scientific Computing|SIAM J. Sci. Stat. Comput.]] | volume = 13 | issue = 2 | pages = 631–644 | hdl = 10338.dmlcz/104566 | hdl-access = free }}
* {{cite book