Content deleted Content added
Em3rgent0rdr (talk | contribs) →Algorithm: add that this example is using Vref of 5V. |
m convert special characters found by Wikipedia:Typo Team/moss (via WP:JWB) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 6:
== History ==
The SAR ADC was first used for experimental [[pulse-code modulation]] (PCM) by [[Bell Labs]] in the 1940s. In 1954, [[Bernard Marshall Gordon|Bernard Gordon]] introduced the first commercial [[
== Algorithm ==
Line 25:
When implemented as a real analog circuit, circuit inaccuracies and [[Noise (electronics)|noise]] may cause the binary search algorithm to incorrectly remove values it believes {{math|''V''<sub>in</sub>}} cannot be, so a successive-approximation ADC might not output the closest value. It is very important for the DAC to accurately produce all {{math|2<sup>''n''</sup>}} analog values for comparison against the unknown {{math|''V''<sub>in</sub>}} in order to produce a best match estimate. The maximal error can easily exceed several LSBs, especially as the error between the actual and ideal {{math|2<sup>''n''</sup>}} becomes large. Manufacturers may characterize the accuracy using an [[effective number of bits]] (ENOB) smaller than the actual number of output bits.
{{As of|2001}}, the component-matching limitations of the DAC generally limited the linearity to about 12 bits in practical designs and mandated some form of trimming or calibration to achieve the necessary linearity for more than 12 bits.<ref>{{Cite web |date=2001-10-02 |title=Understanding SAR ADCs: Their Architecture and Comparison with Other ADCs |url=https://www.analog.com/en/resources/technical-articles/successive-approximation-registers-sar-and-flash-adcs.html |url-status=live |archive-url=https://web.archive.org/web/20241118075147/https://www.analog.com/en/resources/technical-articles/successive-approximation-registers-sar-and-flash-adcs.html |archive-date=2024-11-18 |access-date=2025-01-03 |website=[[Analog Devices]]}}</ref> And since [[Johnson–Nyquist noise#Thermal noise on capacitors|kT/C noise]] is inversely proportional to capacitance, low noise demands a large input capacitance (which costs chip area and requires a more powerful drive buffer), which has motivated proposals around noise cancellation.<ref>{{Cite journal |last=Keerthy Kumar |first=Shashank |date=2023 |title=Design of a 13-Bit SAR ADC with kT/C noise cancellation technique |url=http://lup.lub.lu.se/student-papers/record/9142088 |journal=Master's Thesis published in [[Lund University]] Student Papers}}</ref> For comparison, for a {{math|1=''V''<sub>ref</sub>}} of 5 V, the least significant bit of a 16-bit converter corresponds to 76
[[File:ADC animation 20.gif|thumb|alt=Successive approximation animation|Operation of successive-approximation ADC as input voltage falls from 5 to 0 V. Iterations on the ''x'' axis, starting with the initial state at notch 1. Voltages on the ''y'' axis.|right]]
Line 36:
When the analog input is being compared to the internal DAC output, it effectively is being compared to each of these binary weights, starting with the 2.5 V and either keeping it or clearing it as a result. Then by adding the next weight to the previous result, comparing again, and repeating until all the bits and their weights have been compared to the input, the result, a binary number representing the analog input, is found.
'''Example 2:''' The working of a 4-bit successive-approximation ADC is illustrated below. The MSB is initially set to 1, whereas the remaining digits are set to zero. If the input voltage is lower than the value stored in the register, on the next clock cycle, the register changes its value to that illustrated in the figure by following the green line. If the input voltage is higher, then on the next clock cycle, the register changes its value to that illustrated in the figure by following the red line. The simplified structure of this type of ADC that acts on {{math|1=2<sup>''n''</sup>}} volts range can be expressed as an algorithm:
# Initialize register with MSB set to 1 and all other values set to zero.
Line 67:
===Variants===
* ''Counter type ADC'': The D to A converter can be easily turned around to provide the inverse function A to D conversion. The principle is to adjust the DAC's input code until the DAC's output comes within {{math|±{{frac|1|2}}}} LSB to the analog input, which is to be converted to binary digital form.
* ''Servo tracking ADC'': It is an improved version of a counting ADC. The circuit consists of an up-down counter with the comparator controlling the direction of the count. The analog output of the DAC is compared with the analog input. If the input is greater than the DAC output signal, the output of the comparator goes high and the counter is caused to count up. The tracking ADC has the advantage of being simple. The disadvantage, however, is the time needed to stabilize as a new conversion value is directly proportional to the rate at which the analog signal changes.
|