Content deleted Content added
Frau Holle (talk | contribs) →Special cases: unify subsection headers |
Made the series representation more explicit by way of the gamma function. This way future readers don't have to guess what the exact representation of the generalized hypergeometric function looks like. |
||
(43 intermediate revisions by 19 users not shown) | |||
Line 1:
{{Short description|Family of power series in mathematics}}
{{For|other generalizations of the hypergeometric function|hypergeometric function}}
{{Distinguish|general hypergeometric function}}{{Redirects here|PFq|3=PFQ (disambiguation)}}[[File:Plot of the generalized hypergeometric function pFq(a b z) with a=(2,4,6,8) and b=(2,3,5,7,11) in the complex plane from -2-2i to 2+2i created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the generalized hypergeometric function pFq(a b z) with a=(2,4,6,8) and b=(2,3,5,7,11) in the complex plane from -2-2i to 2+2iPlot of the generalized hypergeometric function pFq(a b z) with a=(2,4,6,8) and b=(2,3,5,7,11) in the complex plane from -2-2i to 2+2i created with Mathematica 13.1 function ComplexPlot3D created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the generalized hypergeometric function pFq(a b z) with a=(2,4,6,8) and b=(2,3,5,7,11) in the complex plane from -2-2i to 2+2i created with Mathematica 13.1 function ComplexPlot3D]]
Line 38 ⟶ 39:
:<math>\begin{align}
(a)_0 &= 1, \\
(a)_n &= a(a+1)(a+2) \cdots (a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}, && n \geq 1,
\end{align}</math>
where <math>\Gamma(x)</math> represents the [[Gamma function|gamma function]], this can be written
:<math>\,{}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(b_1)_n\cdots(b_q)_n} \, \frac {z^n} {n!} = \frac{\Gamma(b_1)\cdots \Gamma(b_q)}{\Gamma(a_1)\cdots \Gamma(a_p)} \sum_{n=0}^{\infty} \frac{\Gamma(n+a_1)\cdots \Gamma(n+a_p)}{\Gamma(n+b_1)\cdots \Gamma(n+b_q)} \frac{z^n}{n!}.</math>
(Note that this use of the Pochhammer symbol is not standard; however it is the standard usage in this context.)
Line 61 ⟶ 62:
There are certain values of the ''a''<sub>''j''</sub> and ''b''<sub>''k''</sub> for which the numerator or the denominator of the coefficients is 0.
* If any ''a''<sub>''j''</sub> is a non-positive integer (0, −1, −2, etc.) then the series only has a finite number of terms and is, in fact, a polynomial of degree −''a''<sub>''j''</sub>.
* If any ''b''<sub>''k''</sub> is a non-positive integer (excepting the previous case with
Excluding these cases, the [[ratio test]] can be applied to determine the radius of convergence.
Line 76 ⟶ 77:
It is immediate from the definition that the order of the parameters ''a<sub>j</sub>'', or the order of the parameters ''b<sub>k</sub>'' can be changed without changing the value of the function. Also, if any of the parameters ''a<sub>j</sub>'' is equal to any of the parameters ''b<sub>k</sub>'', then the matching parameters can be "cancelled out", with certain exceptions when the parameters are non-positive integers. For example,
:<math>\,{}_2F_1(3,1;1;z) = \,{}_2F_1(1,3;1;z) = \,{}_1F_0(3;;z)</math>.
This cancelling is a special case of a reduction formula that may be applied whenever a parameter on the top row differs from one on the bottom row by a non-negative integer.<ref>{{cite book|
:<math>
{}_{A+1}F_{B+1}\left[
Line 83 ⟶ 84:
b_{1},\ldots ,b_{B},c
\end{array}
;z\right] = \sum_{j = 0}^n \binom{n}{j} \frac{
\begin{array}{c}
a_{1} + j,\ldots ,a_{A} + j \\
Line 124 ⟶ 125:
\end{align}</math>
Combining these gives a differential equation satisfied by ''w'' = <sub>''p''</sub>''F''<sub>''q''</sub>:
:<math>z\prod_{n=1}^{p}\left(z\frac{{\rm{d}}}{{\rm{d}}z} + a_n\right)w = z\frac{{\rm{d}}}{{\rm{d}}z}\prod_{n=1}^{q}\left(z\frac{{\rm{d}}}{{\rm{d}}z} + b_n-1\right)w</math>.
Line 137 ⟶ 138:
:<math>z\; {}_pF_q(a_1+1,\dots,a_p+1;b_1+1,\dots,b_q+1;z),</math>
:<math>{}_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;z).</math>
Since the space has dimension 2, any three of these ''p''+''q''+2 functions are linearly dependent
<ref>{{cite journal|first1=J. E. |last1=Gottschalk|first2=E. N.|last2=Maslen|title=Reduction formulae for generalised hypergeometric functions of one variable| journal=J. Phys. A: Math. Gen.|volume=21|pages=1983–1998|year=1988|issue=9 |doi=10.1088/0305-4470/21/9/015|bibcode=1988JPhA...21.1983G }}</ref><ref>
{{cite journal|first1=D. |last1=Rainville|title=The contiguous function relations for pFq with application to Bateman's J and Rice's H| journal=Bull. Amer. Math. Soc.|volume=51|number=10|pages=714–723|year=1945|doi=10.1090/S0002-9904-1945-08425-0|doi-access=free}}</ref>
:<math>
(a_i-b_j+1){}_pF_q(...a_i..;...,b_j...;z)
=
a_i\,{}_pF_q(...a_i+1..;...,b_j...;z)
-(b_j-1){}_pF_q(...a_i..;...,b_j-1...;z).
</math>
:<math>
(a_i-a_j){}_pF_q(...a_i..a_j..;.....;z)
=
a_i\,{}_pF_q(...a_i+1..a_j..;......;z)
-a_j\,{}_pF_q(...a_i..a_j+1...;....;z).
</math>
:<math>
b_j\,{}_pF_q(...a_i....;..b_j...;z)
=
a_i\,{}_pF_q(...a_i+1....;..b_j+1...;z)
+(b_j-a_i){}_pF_q(...a_i....;..b_j+1...;z)
.
</math>
:<math>
(a_i-1){}_pF_q(...a_i..a_j;...;z)
=
(a_i-a_j-1){}_pF_q(...a_i-1..a_j;...;z)
+a_j\,{}_pF_q(...a_i-1..a_j+1;...;z)
.
</math>
These dependencies can be written out to generate a large number of identities involving <math>{}_pF_q</math>.
For example, in the simplest non-trivial case,
Line 165 ⟶ 201:
is called '''contiguous''' to
:<math>{}_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;z).</math>
Using the technique outlined above, an identity relating <math>{}_0F_1(;a;z)</math> and its two contiguous functions can be given, six identities relating <math>{}_1F_1(a;b;z)</math> and any two of its four contiguous functions, and fifteen identities relating <math>{}_2F_1(a,b;c;z)</math> and any two of its six contiguous functions have been found.
==Identities==
Line 172 ⟶ 208:
===Saalschütz's theorem===
Saalschütz's theorem<ref>See {{harv|Slater|1966|loc=Section 2.3.1}} or {{harv|Bailey|1935|loc=Section 2.2}} for a proof, or the [[proofwiki:Pfaff-Saalschütz_Theorem|ProofWiki]].</ref> {{harv|Saalschütz|1890}} is
:<math>{}_3F_2 (a,b, -n;c, 1+a+b-c-n;1)= \frac{(c-a)_n(c-b)_n}{(c)_n(c-a-b)_n}.</math>
For extension of this theorem, see a research paper by Rakha & Rathie. According to {{Harvard citation|Andrews|Askey|Roy|1999|p=69}}, it was in fact first discovered by [[Johann Friedrich Pfaff|Pfaff]] in 1797.<ref>Pfaff, J. F. [1797]. Observations analyticae ad L. Euleri Institutiones Calculi Integralis. Vol. IV, Supplem. II et IV, Historie de 1793, Nova Acata Acad. Scie. Petropolitanae. XI, 38-57. (Note: The history section is paged separately from the scientific section of this journal.) </ref>
===Dixon's identity===
Line 192 ⟶ 228:
Terminating means that ''m'' is a non-negative integer and 2-balanced means that
:<math>1+2a=b+c+d+e-m.</math>
Many of the other formulas for special values of hypergeometric functions can be derived from this as special or limiting cases. It is also called the Dougall-Ramanujan identity. It is a special case of Jackson's identity, and it gives Dixon's identity and Saalschütz's theorem as special cases.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Dougall-Ramanujan Identity |url=https://mathworld.wolfram.com/Dougall-RamanujanIdentity.html |access-date=2025-03-13 |website=mathworld.wolfram.com |language=en}}</ref>
===Generalization of Kummer's transformations and identities for <sub>2</sub>''F''<sub>2</sub>===
Line 295 ⟶ 331:
When a is a non-positive integer, −''n'', <math>{}_1F_1(-n;b;z)</math> is a polynomial. Up to constant factors, these are the [[Laguerre polynomials]]. This implies [[Hermite polynomials]] can be expressed in terms of <sub>1</sub>''F''<sub>1</sub> as well.
===The series <sub>1</sub>''F''<sub>2</sub>===
Relations to other functions are known for certain parameter combinations only.
The function <math>x\; {}_1F_2\left(\frac{1}{2};\frac{3}{2},\frac{3}{2};-\frac{x^2}{4}\right)</math> is the antiderivative of the [[cardinal sine]]. With modified values of <math>a_1</math> and <math>b_1</math>, one obtains the antiderivative of <math>\sin(x^\beta)/x^\alpha</math>.<ref>Victor Nijimbere, Ural Math J vol 3(1) and https://arxiv.org/abs/1703.01907 (2017)</ref>
The [[Lommel function]] is <math> s_{\mu, \nu} (z) = \frac{z^{\mu + 1}}{(\mu - \nu + 1)(\mu + \nu + 1)} {}_1F_2(1; \frac{\mu}{2} - \frac{\nu}{2} + \frac{3}{2} , \frac{\mu}{2} + \frac{\nu}{2} + \frac{3}{2} ;-\frac{z^2}{4}) </math>.<ref>Watson's "Treatise on the Theory of Bessel functions" (1966), Section 10.7, Equation (10)</ref>
===The series <sub>2</sub>''F''<sub>0</sub>===
The confluent hypergeometric function of the second kind can be written as:<ref>{{cite web |title=DLMF: §13.6 Relations to Other Functions ‣ Kummer Functions ‣ Chapter 13 Confluent Hypergeometric Functions |url=https://dlmf.nist.gov/13.6 |website=dlmf.nist.gov}}</ref>
:<math>U(a,b,z) = z^{-a} \; {}_2 F_0 \left( a, a-b+1; ; -\frac{1}{z}\right).</math>
===The series <sub>2</sub>''F''<sub>1</sub>===
Line 334 ⟶ 379:
:<math>\int_0^x\sqrt{1+y^\alpha}\,\mathrm{d}y=\frac{x}{2+\alpha}\left \{\alpha\;{}_2F_1\left(\tfrac{1}{\alpha},\tfrac{1}{2};1+\tfrac{1}{\alpha};-x^\alpha \right) +2\sqrt{x^\alpha+1} \right \},\qquad \alpha\neq0.</math>
===The series <sub>2</sub>''F''<sub>2</sub>===
The hypergeometric series <math>{}_2F_2</math> is generally associated with integrals of products of power functions and the exponential function. As such, the [[Exponential integral|exponential integral]] can be written as:
:<math>\operatorname{Ei}(x)=x{}_2F_2(1,1;2,2;x)+\ln x+\gamma.</math>
===The series <sub>3</sub>''F''<sub>0</sub>===
:<math>s_n(x)=(-x/2)^n{}_3F_0(-n,\frac{1-n}{2},1-\frac{n}{2};;-\frac{4}{x^2}).</math>
===The series <sub>3</sub>''F''<sub>2</sub>===
The function
::<math>\operatorname{Li}_2(x) = \sum_{n>0}\,{x^n}{n^{-2}} = x \; {}_3F_2(1,1,1;2,2;x)</math>
is the [[dilogarithm]]<ref>{{cite web|last=Candan|first=Cagatay|title=A Simple Proof of F(1,1,1;2,2;x)=dilog(1-x)/x
|url=http://www.eee.metu.edu.tr/~ccandan/pub_dir/hyper_rel.pdf}}</ref>
The function
::<math>Q_n(x;a,b,N)= {}_3F_2(-n,-x,n+a+b+1;a+1,-N+1;1)</math>
is a [[Hahn polynomial]].
===The series <sub>4</sub>''F''<sub>3</sub>===
The function
::<math>p_n(t^2)=(a+b)_n(a+c)_n(a+d)_n \; {}_4F_3\left( -n, a+b+c+d+n-1, a-t, a+t ; a+b, a+c, a+d ;1\right)</math>
is a [[Wilson polynomial]].
All roots of a [[quintic equation]] can be expressed in terms of radicals and the [[Bring radical]], which is the real solution to <math>x^5 + x + a = 0</math>. The Bring radical can be written as:<ref name="BR">
{{cite arXiv
| last = Glasser | first = M. Lawrence
| year = 1994
| title = The quadratic formula made hard: A less radical approach to solving equations
| eprint = math.CA/9411224
}}
</ref>
::<math>\operatorname{BR}(a) = -a \; {}_4F_3\left( \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} ; \frac{1}{2}, \frac{3}{4}, \frac{5}{4} ; \frac{3125a^4}{256} \right).</math>
The partition function <math>Z(K)</math> of the 2D isotropic [[Square lattice Ising model|Ising model]] with no external magnetic field was found by [[Lars Onsager|Onsager]] in the 1940s and can be expressed as<ref name="Ising">
{{cite journal
| last = Viswanathan | first = G. M.
| year = 2014
| title = The hypergeometric series for the partition function of the 2-D Ising model
| journal = Journal of Statistical Mechanics: Theory and Experiment
| volume = 2015
| issue = 7
| page = 07004
| doi = 10.1088/1742-5468/2015/07/P07004
| arxiv = 1411.2495
| bibcode = 2015JSMTE..07..004V
}}
</ref>
::<math>\ln Z(K) = \ln(2 \cosh 2K) -k^2 {}_4F_3\left( 1, 1, \frac{3}{2}, \frac{3}{2} ; 2, 2, 2; 16k^2 \right),</math>
with <math>K=\frac{J}{k_\mathrm{B}T}</math> and <math>k=\frac{1}{2}\tanh 2K\,\operatorname{sech} 2K</math>.
===The series <sub>q+1</sub>''F''<sub>q</sub>===
The functions
::<math>\operatorname{Li}_q(z)=z \; {}_{q+1}F_q\left(1,1,\ldots,1;2,2,\ldots,2;z\right)</math>
::<math>\operatorname{Li}_{-p}(z)=z \; {}_pF_{p-1}\left(2,2,\ldots,2;1,1,\ldots,1;z\right)</math>
for <math>q\in\mathbb{N}_0</math> and <math>p\in\mathbb{N}</math> are the [[Polylogarithm]].
For each integer ''n''≥2, the roots of the polynomial ''x''<sup>''n''</sup>−''x''+t can be expressed as a sum of at most ''N''−1 hypergeometric functions of type <sub>''n''+1</sub>F<sub>''n''</sub>, which can always be reduced by eliminating at least one pair of ''a'' and ''b'' parameters.<ref name="BR"/>
==Generalizations==
Line 380 ⟶ 469:
*{{Cite book | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol. III | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | mr=0066496 | year=1955}}
* {{cite book | last1= Gasper | first1= George | last2= Rahman | first2= Mizan | author-link2= Mizan Rahman | title= Basic Hypergeometric Series | edition= 2nd | year= 2004 | series= Encyclopedia of Mathematics and Its Applications | volume= 96 | publisher= Cambridge University Press | ___location= Cambridge, UK | mr= 2128719 | zbl= 1129.33005 | isbn= 978-0-521-83357-8 }} (the first edition has {{isbn|0-521-35049-2}})
* {{cite journal | last= Gauss | first= Carl Friedrich | author-link= Carl Friedrich Gauss | title= Disquisitiones generales circa seriam infinitam <math> 1 + \tfrac {\alpha \beta} {1 \cdot \gamma} ~x + \tfrac {\alpha (\alpha+1) \beta (\beta+1)} {1 \cdot 2 \cdot \gamma (\gamma+1)} ~x~x + \mbox{etc.} </math> | language= la | url= https://books.google.com/books?id=uDMAAAAAQAAJ | journal= Commentationes Societatis Regiae Scientarum Gottingensis Recentiores | ___location= Göttingen | year= 1813 | volume= 2 }} (a reprint of this paper can be found in [https://archive.org/details/bub_gb_uDMAAAAAQAAJ ''Carl Friedrich Gauss, Werke''], p. 125) (a translation is available [[wikisource:Translation:Disquisitiones_generales_circa_seriem_infinitam_...|on Wikisource]])
*{{Citation | last1=Grinshpan | first1=A. Z. | title=Generalized hypergeometric functions: product identities and weighted norm inequalities | doi=10.1007/s11139-013-9487-x | year=2013 |
journal=The Ramanujan Journal | volume=31 | issue=1–2 | pages=53–66 | s2cid=121054930 }}
Line 394 ⟶ 483:
* {{cite journal|last1=Quigley |first1=J.|last2=Wilson |first2=K.J. |last3=Walls |first3=L.
|last4=Bedford|first4=T. |title=A Bayes linear Bayes Method for Estimation of Correlated Event Rates
|journal=Risk Analysis |volume=33|issue=12|pages=2209–2224|year=2013|doi=10.1111/risa.12035|pmid=23551053|bibcode=2013RiskA..33.2209Q |s2cid=24476762 |url=https://strathprints.strath.ac.uk/43403/1/EventRatesRA.pdf}}
* {{cite journal | last1= Rathie | first1= Arjun K. | last2= Pogány | first2= Tibor K. | title= New summation formula for <sub>3</sub>''F''<sub>2</sub>(1/2) and a Kummer-type II transformation of <sub>2</sub>''F''<sub>2</sub>(''x'') | journal = Mathematical Communications | volume= 13 | year= 2008 | pages= 63–66 | url= http://hrcak.srce.hr/file/37118 | mr= 2422088 | zbl= 1146.33002 }}
* {{cite journal|last1=Rakha |first1=M.A.|last2=Rathie |first2=Arjun K.|title=Extensions of Euler's type- II transformation and Saalschutz's theorem |journal=Bull. Korean Math. Soc.|volume=48 |number=1|pages=151–156|year=2011 |doi=10.4134/bkms.2011.48.1.151|doi-access=free}}
Line 413 ⟶ 502:
[[Category:Hypergeometric functions|*]]
[[Category:Ordinary differential equations]]
[[Category:
|