Content deleted Content added
→The series 1F2: Gave actual connection between Lommel function and generalized hgf, and confirmed the Lommel function definition is found in the actual Watson text. |
Made the series representation more explicit by way of the gamma function. This way future readers don't have to guess what the exact representation of the generalized hypergeometric function looks like. |
||
(19 intermediate revisions by 12 users not shown) | |||
Line 39:
:<math>\begin{align}
(a)_0 &= 1, \\
(a)_n &= a(a+1)(a+2) \cdots (a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}, && n \geq 1,
\end{align}</math>
where <math>\Gamma(x)</math> represents the [[Gamma function|gamma function]], this can be written
:<math>\,{}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(b_1)_n\cdots(b_q)_n} \, \frac {z^n} {n!} = \frac{\Gamma(b_1)\cdots \Gamma(b_q)}{\Gamma(a_1)\cdots \Gamma(a_p)} \sum_{n=0}^{\infty} \frac{\Gamma(n+a_1)\cdots \Gamma(n+a_p)}{\Gamma(n+b_1)\cdots \Gamma(n+b_q)} \frac{z^n}{n!}.</math>
(Note that this use of the Pochhammer symbol is not standard; however it is the standard usage in this context.)
Line 77:
It is immediate from the definition that the order of the parameters ''a<sub>j</sub>'', or the order of the parameters ''b<sub>k</sub>'' can be changed without changing the value of the function. Also, if any of the parameters ''a<sub>j</sub>'' is equal to any of the parameters ''b<sub>k</sub>'', then the matching parameters can be "cancelled out", with certain exceptions when the parameters are non-positive integers. For example,
:<math>\,{}_2F_1(3,1;1;z) = \,{}_2F_1(1,3;1;z) = \,{}_1F_0(3;;z)</math>.
This cancelling is a special case of a reduction formula that may be applied whenever a parameter on the top row differs from one on the bottom row by a non-negative integer.<ref>{{cite book|
:<math>
{}_{A+1}F_{B+1}\left[
Line 138:
:<math>z\; {}_pF_q(a_1+1,\dots,a_p+1;b_1+1,\dots,b_q+1;z),</math>
:<math>{}_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;z).</math>
Since the space has dimension 2, any three of these ''p''+''q''+2 functions are linearly dependent
<ref>{{cite journal|first1=J. E. |last1=Gottschalk|first2=E. N.|last2=Maslen|title=Reduction formulae for generalised hypergeometric functions of one variable| journal=J. Phys. A: Math. Gen.|volume=21|pages=1983–1998|year=1988|issue=9 |doi=10.1088/0305-4470/21/9/015|bibcode=1988JPhA...21.1983G }}</ref><ref>
{{cite journal|first1=D. |last1=Rainville|title=The contiguous function relations for pFq with application to Bateman's J and Rice's H| journal=Bull. Amer. Math. Soc.|volume=51|number=10|pages=714–723|year=1945|doi=10.1090/S0002-9904-1945-08425-0|doi-access=free}}</ref>
:<math>
(a_i-b_j+1){}_pF_q(...a_i..;...,b_j...;z)
=
a_i\,{}_pF_q(...a_i+1..;...,b_j...;z)
-(b_j-1){}_pF_q(...a_i..;...,b_j-1...;z).
</math>
:<math>
(a_i-a_j){}_pF_q(...a_i..a_j..;.....;z)
=
a_i\,{}_pF_q(...a_i+1..a_j..;......;z)
-a_j\,{}_pF_q(...a_i..a_j+1...;....;z).
</math>
:<math>
b_j\,{}_pF_q(...a_i....;..b_j...;z)
=
a_i\,{}_pF_q(...a_i+1....;..b_j+1...;z)
+(b_j-a_i){}_pF_q(...a_i....;..b_j+1...;z)
.
</math>
:<math>
(a_i-1){}_pF_q(...a_i..a_j;...;z)
=
(a_i-a_j-1){}_pF_q(...a_i-1..a_j;...;z)
+a_j\,{}_pF_q(...a_i-1..a_j+1;...;z)
.
</math>
These dependencies can be written out to generate a large number of identities involving <math>{}_pF_q</math>.
For example, in the simplest non-trivial case,
Line 166 ⟶ 201:
is called '''contiguous''' to
:<math>{}_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;z).</math>
Using the technique outlined above, an identity relating <math>{}_0F_1(;a;z)</math> and its two contiguous functions can be given, six identities relating <math>{}_1F_1(a;b;z)</math> and any two of its four contiguous functions, and fifteen identities relating <math>{}_2F_1(a,b;c;z)</math> and any two of its six contiguous functions have been found.
==Identities==
Line 173 ⟶ 208:
===Saalschütz's theorem===
Saalschütz's theorem<ref>See {{harv|Slater|1966|loc=Section 2.3.1}} or {{harv|Bailey|1935|loc=Section 2.2}} for a proof, or the [[proofwiki:Pfaff-Saalschütz_Theorem|ProofWiki]].</ref> {{harv|Saalschütz|1890}} is
:<math>{}_3F_2 (a,b, -n;c, 1+a+b-c-n;1)= \frac{(c-a)_n(c-b)_n}{(c)_n(c-a-b)_n}.</math>
For extension of this theorem, see a research paper by Rakha & Rathie. According to {{Harvard citation|Andrews|Askey|Roy|1999|p=69}}, it was in fact first discovered by [[Johann Friedrich Pfaff|Pfaff]] in 1797.<ref>Pfaff, J. F. [1797]. Observations analyticae ad L. Euleri Institutiones Calculi Integralis. Vol. IV, Supplem. II et IV, Historie de 1793, Nova Acata Acad. Scie. Petropolitanae. XI, 38-57. (Note: The history section is paged separately from the scientific section of this journal.) </ref>
===Dixon's identity===
Line 193 ⟶ 228:
Terminating means that ''m'' is a non-negative integer and 2-balanced means that
:<math>1+2a=b+c+d+e-m.</math>
Many of the other formulas for special values of hypergeometric functions can be derived from this as special or limiting cases. It is also called the Dougall-Ramanujan identity. It is a special case of Jackson's identity, and it gives Dixon's identity and Saalschütz's theorem as special cases.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Dougall-Ramanujan Identity |url=https://mathworld.wolfram.com/Dougall-RamanujanIdentity.html |access-date=2025-03-13 |website=mathworld.wolfram.com |language=en}}</ref>
===Generalization of Kummer's transformations and identities for <sub>2</sub>''F''<sub>2</sub>===
Line 303 ⟶ 338:
The function <math>x\; {}_1F_2\left(\frac{1}{2};\frac{3}{2},\frac{3}{2};-\frac{x^2}{4}\right)</math> is the antiderivative of the [[cardinal sine]]. With modified values of <math>a_1</math> and <math>b_1</math>, one obtains the antiderivative of <math>\sin(x^\beta)/x^\alpha</math>.<ref>Victor Nijimbere, Ural Math J vol 3(1) and https://arxiv.org/abs/1703.01907 (2017)</ref>
The [[Lommel function]]
===The series <sub>2</sub>''F''<sub>0</sub>===
Line 344 ⟶ 379:
:<math>\int_0^x\sqrt{1+y^\alpha}\,\mathrm{d}y=\frac{x}{2+\alpha}\left \{\alpha\;{}_2F_1\left(\tfrac{1}{\alpha},\tfrac{1}{2};1+\tfrac{1}{\alpha};-x^\alpha \right) +2\sqrt{x^\alpha+1} \right \},\qquad \alpha\neq0.</math>
===The series <sub>2</sub>''F''<sub>2</sub>===
The hypergeometric series <math>{}_2F_2</math> is generally associated with integrals of products of power functions and the exponential function. As such, the [[Exponential integral|exponential integral]] can be written as:
:<math>\operatorname{Ei}(x)=x{}_2F_2(1,1;2,2;x)+\ln x+\gamma.</math>
===The series <sub>3</sub>''F''<sub>0</sub>===
:<math>s_n(x)=(-x/2)^n{}_3F_0(-n,\frac{1-n}{2},1-\frac{n}{2};;-\frac{4}{x^2}).</math>
===The series <sub>3</sub>''F''<sub>2</sub>===
Line 373 ⟶ 413:
}}
</ref>
::<math>\operatorname{BR}(
The partition function <math>Z(K)</math> of the 2D isotropic [[Square lattice Ising model|Ising model]] with no external magnetic field was found by [[Lars Onsager|Onsager]] in the 1940s and can be expressed as<ref name="Ising">
{{cite journal
| last = Viswanathan | first = G. M.
| year = 2014
| title = The hypergeometric series for the partition function of the 2-D Ising model
| journal = Journal of Statistical Mechanics: Theory and Experiment
| volume = 2015
| issue = 7
| page = 07004
| doi = 10.1088/1742-5468/2015/07/P07004
| arxiv = 1411.2495
| bibcode = 2015JSMTE..07..004V
}}
</ref>
::<math>\ln Z(K) = \ln(2 \cosh 2K) -k^2 {}_4F_3\left( 1, 1, \frac{3}{2}, \frac{3}{2} ; 2, 2, 2; 16k^2 \right),</math>
with <math>K=\frac{J}{k_\mathrm{B}T}</math> and <math>k=\frac{1}{2}\tanh 2K\,\operatorname{sech} 2K</math>.
===The series <sub>q+1</sub>''F''<sub>q</sub>===
Line 412 ⟶ 469:
*{{Cite book | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol. III | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | mr=0066496 | year=1955}}
* {{cite book | last1= Gasper | first1= George | last2= Rahman | first2= Mizan | author-link2= Mizan Rahman | title= Basic Hypergeometric Series | edition= 2nd | year= 2004 | series= Encyclopedia of Mathematics and Its Applications | volume= 96 | publisher= Cambridge University Press | ___location= Cambridge, UK | mr= 2128719 | zbl= 1129.33005 | isbn= 978-0-521-83357-8 }} (the first edition has {{isbn|0-521-35049-2}})
* {{cite journal | last= Gauss | first= Carl Friedrich | author-link= Carl Friedrich Gauss | title= Disquisitiones generales circa seriam infinitam <math> 1 + \tfrac {\alpha \beta} {1 \cdot \gamma} ~x + \tfrac {\alpha (\alpha+1) \beta (\beta+1)} {1 \cdot 2 \cdot \gamma (\gamma+1)} ~x~x + \mbox{etc.} </math> | language= la | url= https://books.google.com/books?id=uDMAAAAAQAAJ | journal= Commentationes Societatis Regiae Scientarum Gottingensis Recentiores | ___location= Göttingen | year= 1813 | volume= 2 }} (a reprint of this paper can be found in [https://archive.org/details/bub_gb_uDMAAAAAQAAJ ''Carl Friedrich Gauss, Werke''], p. 125) (a translation is available [[wikisource:Translation:Disquisitiones_generales_circa_seriem_infinitam_...|on Wikisource]])
*{{Citation | last1=Grinshpan | first1=A. Z. | title=Generalized hypergeometric functions: product identities and weighted norm inequalities | doi=10.1007/s11139-013-9487-x | year=2013 |
journal=The Ramanujan Journal | volume=31 | issue=1–2 | pages=53–66 | s2cid=121054930 }}
Line 426 ⟶ 483:
* {{cite journal|last1=Quigley |first1=J.|last2=Wilson |first2=K.J. |last3=Walls |first3=L.
|last4=Bedford|first4=T. |title=A Bayes linear Bayes Method for Estimation of Correlated Event Rates
|journal=Risk Analysis |volume=33|issue=12|pages=2209–2224|year=2013|doi=10.1111/risa.12035|pmid=23551053|bibcode=2013RiskA..33.2209Q |s2cid=24476762 |url=https://strathprints.strath.ac.uk/43403/1/EventRatesRA.pdf}}
* {{cite journal | last1= Rathie | first1= Arjun K. | last2= Pogány | first2= Tibor K. | title= New summation formula for <sub>3</sub>''F''<sub>2</sub>(1/2) and a Kummer-type II transformation of <sub>2</sub>''F''<sub>2</sub>(''x'') | journal = Mathematical Communications | volume= 13 | year= 2008 | pages= 63–66 | url= http://hrcak.srce.hr/file/37118 | mr= 2422088 | zbl= 1146.33002 }}
* {{cite journal|last1=Rakha |first1=M.A.|last2=Rathie |first2=Arjun K.|title=Extensions of Euler's type- II transformation and Saalschutz's theorem |journal=Bull. Korean Math. Soc.|volume=48 |number=1|pages=151–156|year=2011 |doi=10.4134/bkms.2011.48.1.151|doi-access=free}}
Line 445 ⟶ 502:
[[Category:Hypergeometric functions|*]]
[[Category:Ordinary differential equations]]
[[Category:
|