Generalized hypergeometric function: Difference between revisions

Content deleted Content added
Contiguous function and related identities: writedown of the contiguous relations
Made the series representation more explicit by way of the gamma function. This way future readers don't have to guess what the exact representation of the generalized hypergeometric function looks like.
 
(13 intermediate revisions by 8 users not shown)
Line 39:
:<math>\begin{align}
(a)_0 &= 1, \\
(a)_n &= a(a+1)(a+2) \cdots (a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}, && n \geq 1,
\end{align}</math>
 
where <math>\Gamma(x)</math> represents the [[Gamma function|gamma function]], this can be written
this can be written
 
:<math>\,{}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(b_1)_n\cdots(b_q)_n} \, \frac {z^n} {n!} = \frac{\Gamma(b_1)\cdots \Gamma(b_q)}{\Gamma(a_1)\cdots \Gamma(a_p)} \sum_{n=0}^{\infty} \frac{\Gamma(n+a_1)\cdots \Gamma(n+a_p)}{\Gamma(n+b_1)\cdots \Gamma(n+b_q)} \frac{z^n}{n!}.</math>
 
(Note that this use of the Pochhammer symbol is not standard; however it is the standard usage in this context.)
Line 77:
It is immediate from the definition that the order of the parameters ''a<sub>j</sub>'', or the order of the parameters ''b<sub>k</sub>'' can be changed without changing the value of the function. Also, if any of the parameters ''a<sub>j</sub>'' is equal to any of the parameters ''b<sub>k</sub>'', then the matching parameters can be "cancelled out", with certain exceptions when the parameters are non-positive integers. For example,
:<math>\,{}_2F_1(3,1;1;z) = \,{}_2F_1(1,3;1;z) = \,{}_1F_0(3;;z)</math>.
This cancelling is a special case of a reduction formula that may be applied whenever a parameter on the top row differs from one on the bottom row by a non-negative integer.<ref>{{cite book|firstfirst1=A. P.|last1=Prudnikov|first2=Yu. A.|last2=Brychkov|first3=O. I.|last3=Marichev|title=Integrals & Series Volume 3: More Special Functions|publisher=Gordon and Breach|year=1990|pages=439}}</ref><ref>{{cite journal|first1=Per W. |last1=Karlsson|title = Hypergeometric functions with integral parameter differences|year=1970 | journal=J. Math. Phys.|volume=12|number=2|doi=10.1063/1.1665587|pages=270-271270–271|url=https://backend.orbit.dtu.dk/ws/files/3645014/Per.pdf }}</ref>
:<math>
{}_{A+1}F_{B+1}\left[
Line 139:
:<math>{}_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;z).</math>
Since the space has dimension 2, any three of these ''p''+''q''+2 functions are linearly dependent:
<ref>{{cite journal|first1=J. E. |last1=Gottschalk|first2=E. N.|last2=Maslen|title=Reduction formulae for generalised hypergeometric functions of one variable| journal=J. Phys. A: Math. Gen.|volume=21|pages=1983--19981983–1998|year=1988|issue=9 |doi=10.1088/0305-4470/21/9/015|bibcode=1988JPhA...21.1983G }}</ref><ref>
{{cite journal|first1=D. |last1=Rainville|title=The contiguous function relations for pFq with application to Bateman's J and Rice's H| journal=Bull. Amer. Math. Soc.|volume=51|number=10|pages=714--723714–723|year=1945|doi=10.1090/S0002-9904-1945-08425-0|doi-access=free}}</ref>
 
:<math>
Line 153:
=
a_i\,{}_pF_q(...a_i+1..a_j..;......;z)
-a_j\,{}_pF_q(...a_i..a_j+1...;....;z).
</math>
 
:<math>
b_j\,{}_pF_q(...a_i....;..b_j...;z)
=
a_i\,{}_pF_q(...a_i+1....;..b_j+1...;z)
Line 168:
=
(a_i-a_j-1){}_pF_q(...a_i-1..a_j;...;z)
+a_j\,{}_pF_q(...a_i-1..a_j+1;...;z)
.
</math>
Line 201:
is called '''contiguous''' to
:<math>{}_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;z).</math>
Using the technique outlined above, an identity relating <math>{}_0F_1(;a;z)</math> and its two contiguous functions can be given, six identities relating <math>{}_1F_1(a;b;z)</math> and any two of its four contiguous functions, and fifteen identities relating <math>{}_2F_1(a,b;c;z)</math> and any two of its six contiguous functions have been found. (The first one was derived in the previous paragraph. The last fifteen were given by {{Harvard citation|Gauss in his 1812 paper|1813}}.)
 
==Identities==
Line 208:
 
===Saalschütz's theorem===
Saalschütz's theorem<ref>See {{harv|Slater|1966|loc=Section&nbsp;2.3.1}} or {{harv|Bailey|1935|loc=Section&nbsp;2.2}} for a proof, or the [[proofwiki:Pfaff-Saalschütz_Theorem|ProofWiki]].</ref> {{harv|Saalschütz|1890}} is
:<math>{}_3F_2 (a,b, -n;c, 1+a+b-c-n;1)= \frac{(c-a)_n(c-b)_n}{(c)_n(c-a-b)_n}.</math>
For extension of this theorem, see a research paper by Rakha & Rathie. According to {{Harvard citation|Andrews|Askey|Roy|1999|p=69}}, it was in fact first discovered by [[Johann Friedrich Pfaff|Pfaff]] in 1797.<ref>Pfaff, J. F. [1797]. Observations analyticae ad L. Euleri Institutiones Calculi Integralis.  Vol. IV, Supplem. II et IV, Historie de 1793, Nova Acata Acad. Scie. Petropolitanae.  XI, 38-57. (Note: The history section is paged separately from the scientific section  of this journal.) </ref>
For extension of this theorem, see a research paper by Rakha & Rathie.
 
===Dixon's identity===
Line 228:
Terminating means that ''m'' is a non-negative integer and 2-balanced means that
:<math>1+2a=b+c+d+e-m.</math>
Many of the other formulas for special values of hypergeometric functions can be derived from this as special or limiting cases. It is also called the Dougall-Ramanujan identity. It is a special case of Jackson's identity, and it gives Dixon's identity and Saalschütz's theorem as special cases.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Dougall-Ramanujan Identity |url=https://mathworld.wolfram.com/Dougall-RamanujanIdentity.html |access-date=2025-03-13 |website=mathworld.wolfram.com |language=en}}</ref>
 
===Generalization of Kummer's transformations and identities for <sub>2</sub>''F''<sub>2</sub>===
Line 379:
 
:<math>\int_0^x\sqrt{1+y^\alpha}\,\mathrm{d}y=\frac{x}{2+\alpha}\left \{\alpha\;{}_2F_1\left(\tfrac{1}{\alpha},\tfrac{1}{2};1+\tfrac{1}{\alpha};-x^\alpha \right) +2\sqrt{x^\alpha+1} \right \},\qquad \alpha\neq0.</math>
 
===The series <sub>2</sub>''F''<sub>2</sub>===
The hypergeometric series <math>{}_2F_2</math> is generally associated with integrals of products of power functions and the exponential function. As such, the [[Exponential integral|exponential integral]] can be written as:
:<math>\operatorname{Ei}(x)=x{}_2F_2(1,1;2,2;x)+\ln x+\gamma.</math>
 
===The series <sub>3</sub>''F''<sub>0</sub>===
Line 409 ⟶ 413:
}}
</ref>
::<math>\operatorname{BR}(ta) = -a \; {}_4F_3\left( \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} ; \frac{1}{2}, \frac{3}{4}, \frac{5}{4} ; \frac{3125a^4}{256} \right).</math>
 
The partition function <math>Z(K)</math> of the 2D isotropic [[Square lattice Ising model|Ising model]] with no external magnetic field was found by [[Lars Onsager|Onsager]] in the 1940s and can be expressed as<ref name="Ising">
{{cite journal
| last = Viswanathan | first = G. M.
| year = 2014
| title = The hypergeometric series for the partition function of the 2-D Ising model
| journal = Journal of Statistical Mechanics: Theory and Experiment
| volume = 2015
| issue = 7
| page = 07004
| doi = 10.1088/1742-5468/2015/07/P07004
| arxiv = 1411.2495
| bibcode = 2015JSMTE..07..004V
}}
</ref>
::<math>\ln Z(K) = \ln(2 \cosh 2K) -k^2 {}_4F_3\left( 1, 1, \frac{3}{2}, \frac{3}{2} ; 2, 2, 2; 16k^2 \right),</math>
with <math>K=\frac{J}{k_\mathrm{B}T}</math> and <math>k=\frac{1}{2}\tanh 2K\,\operatorname{sech} 2K</math>.
 
===The series <sub>q+1</sub>''F''<sub>q</sub>===
Line 448 ⟶ 469:
*{{Cite book | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol. III | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | mr=0066496 | year=1955}}
* {{cite book | last1= Gasper | first1= George | last2= Rahman | first2= Mizan | author-link2= Mizan Rahman | title= Basic Hypergeometric Series | edition= 2nd | year= 2004 | series= Encyclopedia of Mathematics and Its Applications | volume= 96 | publisher= Cambridge University Press | ___location= Cambridge, UK | mr= 2128719 | zbl= 1129.33005 | isbn= 978-0-521-83357-8 }} (the first edition has {{isbn|0-521-35049-2}})
* {{cite journal | last= Gauss | first= Carl Friedrich | author-link= Carl Friedrich Gauss | title= Disquisitiones generales circa seriam infinitam &nbsp; <math> 1 + \tfrac {\alpha \beta} {1 \cdot \gamma} ~x + \tfrac {\alpha (\alpha+1) \beta (\beta+1)} {1 \cdot 2 \cdot \gamma (\gamma+1)} ~x~x + \mbox{etc.} </math> | language= la | url= https://books.google.com/books?id=uDMAAAAAQAAJ | journal= Commentationes Societatis Regiae Scientarum Gottingensis Recentiores | ___location= Göttingen | year= 1813 | volume= 2 }} (a reprint of this paper can be found in [https://archive.org/details/bub_gb_uDMAAAAAQAAJ ''Carl Friedrich Gauss, Werke''], p.&nbsp;125) (a translation is available [[wikisource:Translation:Disquisitiones_generales_circa_seriem_infinitam_...|on Wikisource]])
*{{Citation | last1=Grinshpan | first1=A. Z. | title=Generalized hypergeometric functions: product identities and weighted norm inequalities | doi=10.1007/s11139-013-9487-x | year=2013 |
journal=The Ramanujan Journal | volume=31 | issue=1–2 | pages=53–66 | s2cid=121054930 }}
Line 462 ⟶ 483:
* {{cite journal|last1=Quigley |first1=J.|last2=Wilson |first2=K.J. |last3=Walls |first3=L.
|last4=Bedford|first4=T. |title=A Bayes linear Bayes Method for Estimation of Correlated Event Rates
|journal=Risk Analysis |volume=33|issue=12|pages=2209–2224|year=2013|doi=10.1111/risa.12035|pmid=23551053|bibcode=2013RiskA..33.2209Q |s2cid=24476762 |url=https://strathprints.strath.ac.uk/43403/1/EventRatesRA.pdf}}
* {{cite journal | last1= Rathie | first1= Arjun K. | last2= Pogány | first2= Tibor K. | title= New summation formula for <sub>3</sub>''F''<sub>2</sub>(1/2) and a Kummer-type II transformation of <sub>2</sub>''F''<sub>2</sub>(''x'') | journal = Mathematical Communications | volume= 13 | year= 2008 | pages= 63–66 | url= http://hrcak.srce.hr/file/37118 | mr= 2422088 | zbl= 1146.33002 }}
* {{cite journal|last1=Rakha |first1=M.A.|last2=Rathie |first2=Arjun K.|title=Extensions of Euler's type- II transformation and Saalschutz's theorem |journal=Bull. Korean Math. Soc.|volume=48 |number=1|pages=151–156|year=2011 |doi=10.4134/bkms.2011.48.1.151|doi-access=free}}
Line 481 ⟶ 502:
[[Category:Hypergeometric functions|*]]
[[Category:Ordinary differential equations]]
[[Category:MathematicalSeries series(mathematics)]]