Content deleted Content added
Rasheedskr (talk | contribs) m I have added the relativistic extension of RPA citing the relevant article and the references therein. Tags: Visual edit Mobile edit Mobile web edit |
Citation bot (talk | contribs) Altered url. URLs might have been anonymized. | Use this bot. Report bugs. | Suggested by Abductive | Category:Wikipedia articles that may have off-topic sections from July 2025 | #UCB_Category 22/40 |
||
(16 intermediate revisions by 9 users not shown) | |||
Line 1:
{{Short description|Mathematical formalism used in quantum field theory}}
[[File:Random phase approximation ring diagrams.png|thumb|Bubble diagrams, which result in the RPA when summed up. Solid lines stand for interacting or non-interacting [[Green's function (many-body theory)|Green's functions]], dashed lines for two-particle interactions.]]
The '''random phase approximation''' ('''RPA''') is an approximation method in [[condensed matter physics]] and
In the RPA, electrons are assumed to respond only to the total [[electric potential]] ''V''('''r''') which is the sum of the external perturbing potential ''V''<sub>ext</sub>('''r''') and a screening potential ''V''<sub>sc</sub>('''r'''). The external perturbing potential is assumed to oscillate at a single frequency ''ω'', so that the model yields via a [[self-consistent field]] (SCF) method <ref name="Ehrenreich Cohen pp. 786–790">{{cite journal | last1=Ehrenreich | first1=H. | last2=Cohen | first2=M. H. | title=Self-Consistent Field Approach to the Many-Electron Problem | journal=Physical Review | publisher=American Physical Society (APS) | volume=115 | issue=4 | date=15 August 1959 | issn=0031-899X | doi=10.1103/physrev.115.786 | pages=786–790| bibcode=1959PhRv..115..786E }}</ref> a dynamic [[dielectric]] function denoted by ε<sub>RPA</sub>('''k''', ''ω'').
The contribution to the [[dielectric function]] from the total electric potential is assumed to ''average out'', so that only the potential at wave vector '''k''' contributes. This is what is meant by the random phase approximation. The resulting dielectric function, also called the
The RPA was criticized in the late 1950s for overcounting the degrees of freedom and the call for justification led to intense work among theoretical physicists. In a seminal paper [[Murray Gell-Mann]] and [[Keith Brueckner]] showed that the RPA can be derived from a summation of leading-order chain [[Feynman diagram]]s in a dense electron gas.<ref name="Gell-Mann Brueckner pp. 364–368">{{cite journal | last1=Gell-Mann | first1=Murray | last2=Brueckner | first2=Keith A. | title=Correlation Energy of an Electron Gas at High Density | journal=Physical Review | publisher=American Physical Society (APS) | volume=106 | issue=2 | date=15 April 1957 | issn=0031-899X | doi=10.1103/physrev.106.364 | pages=364–368| bibcode=1957PhRv..106..364G | s2cid=120701027 | url=https://authors.library.caltech.edu/3713/1/GELpr57b.pdf }}</ref>
In [[superconductivity]], RPA can be used to derive [[Bardeen–Pines interaction]] between [[Phonon|phonons]] and electrons that leads to [[Cooper pair|Cooper pairing]].<ref>{{Cite book |last=Coleman |first=Piers |url=https://books.google.com/books?id=ESB0CwAAQBAJ&dq=bardeen+pines+interaction&pg=PA225 |title=Introduction to Many-Body Physics |date=2015-11-26 |publisher=Cambridge University Press |isbn=978-1-316-43202-0 |language=en}}</ref>
The consistency in these results became an important justification and motivated a very strong growth in theoretical physics in the late 50s and 60s.▼
▲The consistency in these results became an important justification and motivated a very strong growth in [[theoretical physics]] in the late 50s and 60s.
==Applications ==▼
=== Ground state of an interacting bosonic system===▼
{{off topic|date=July 2025}}
The RPA vacuum <math>\left|\mathrm{RPA}\right\rangle</math> for a bosonic system can be expressed in terms of non-correlated bosonic vacuum <math>\left|\mathrm{MFT}\right\rangle</math> and original boson excitations <math>\mathbf{a}_{i}^{\dagger}</math>
:<math>\left|\mathrm{RPA}\right\rangle=\mathcal{N}\mathbf{e}^{Z_{ij}\mathbf{a}_{i}^{\dagger}\mathbf{a}_{j}^{\dagger}/2}\left|\mathrm{MFT}\right\rangle</math>
where ''Z'' is a [[symmetric matrix]] with <math>|Z|\leq 1</math> and
:<math>\mathcal{N}= \frac{\left\langle \mathrm{MFT}\right|\left.\mathrm{RPA}\right\rangle}{\left\langle \mathrm{MFT}\right|\left.\mathrm{MFT}\right\rangle}</math>
|