Content deleted Content added
specify image heights in pixels (each svg is varyingly sized, and a common size relative to page width is not available) |
mNo edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 49:
<math display="block">G = \frac{G_1 G_2}{G_1 + G_2}.</math>
===Inductors <span class="anchor" id="Lseries"></span>===
[[Inductor]]s follow the same law, in that the total [[inductance]] of non-coupled inductors in series is equal to the sum of their individual inductances:
Line 188:
A common application of series circuit in consumer electronics is in batteries, where several cells connected in series are used to obtain a convenient operating voltage. Two disposable zinc cells in series might power a flashlight or remote control at 3 volts; the battery pack for a hand-held power tool might contain a dozen lithium-ion cells wired in series to provide 48 volts.
Series circuits were formerly used for lighting in [[electric multiple units]] trains. For example, if the supply voltage was 600 volts there might be eight 70-volt bulbs in series (total 560 volts) plus a [[resistor]] to drop the remaining 40 volts. Series circuits for train lighting were superseded, first by [[
Series resistance can also be applied to the arrangement of blood vessels within a given organ. Each organ is supplied by a large artery, smaller arteries, arterioles, capillaries, and veins arranged in series. The total resistance is the sum of the individual resistances, as expressed by the following equation: {{math|1=''R''<sub>total</sub> = ''R''<sub>artery</sub> + ''R''<sub>arterioles</sub> + ''R''<sub>capillaries</sub>}}. The largest proportion of resistance in this series is contributed by the arterioles.<ref name="BRS"/>
|