Content deleted Content added
m Reverted edit by 2A01:CB16:201A:C683:0:67:3AB1:9A01 (talk) to last version by Vincent Lefèvre |
|||
(6 intermediate revisions by 5 users not shown) | |||
Line 51:
of the floating-point value. This includes the sign, (biased) exponent, and significand.
▲8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub> = −0
▲ffff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub> = −infinity
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub>▼
= 2<sup>−262142</sup> × 2<sup>−236</sup> = 2<sup>−262378</sup>▼
▲0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub>
≈ 2.24800708647703657297018614776265182597360918266100276294348974547709294462 × 10<sup>−78984</sup>▼
▲= 2<sup>−262142</sup> × 2<sup>−236</sup> = 2<sup>−262378</sup>
(smallest positive subnormal number)▼
▲≈ 2.24800708647703657297018614776265182597360918266100276294348974547709294462 × 10<sup>−78984</sup>
▲ (smallest positive subnormal number)
0000 0fff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>▼
= 2<sup>−262142</sup> × (1 − 2<sup>−236</sup>)▼
▲0000 0fff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>
≈ 2.4824279514643497882993282229138717236776877060796468692709532979137875392 × 10<sup>−78913</sup>▼
▲= 2<sup>−262142</sup> × (1 − 2<sup>−236</sup>)
(largest subnormal number)▼
▲≈ 2.4824279514643497882993282229138717236776877060796468692709532979137875392 × 10<sup>−78913</sup>
▲ (largest subnormal number)
0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub>▼
= 2<sup>−262142</sup>▼
▲0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub>
≈ 2.48242795146434978829932822291387172367768770607964686927095329791378756168 × 10<sup>−78913</sup>▼
▲= 2<sup>−262142</sup>
(smallest positive normal number)▼
▲≈ 2.48242795146434978829932822291387172367768770607964686927095329791378756168 × 10<sup>−78913</sup>
▲ (smallest positive normal number)
7fff efff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>▼
= 2<sup>262143</sup> × (2 − 2<sup>−236</sup>)▼
▲7fff efff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>
≈ 1.61132571748576047361957211845200501064402387454966951747637125049607182699 × 10<sup>78913</sup>▼
▲= 2<sup>262143</sup> × (2 − 2<sup>−236</sup>)
(largest normal number)▼
▲≈ 1.61132571748576047361957211845200501064402387454966951747637125049607182699 × 10<sup>78913</sup>
▲ (largest normal number)
3fff efff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>▼
= 1 − 2<sup>−237</sup>▼
▲3fff efff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>
≈ 0.999999999999999999999999999999999999999999999999999999999999999999999995472▼
▲= 1 − 2<sup>−237</sup>
(largest number less than one)▼
▲≈ 0.999999999999999999999999999999999999999999999999999999999999999999999995472
▲ (largest number less than one)
3fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub>▼
= 1 (one)▼
▲3fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub>
▲= 1 (one)
3fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub>▼
= 1 + 2<sup>−236</sup>▼
▲3fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub>
≈ 1.00000000000000000000000000000000000000000000000000000000000000000000000906▼
▲= 1 + 2<sup>−236</sup>
(smallest number larger than one)▼
▲≈ 1.00000000000000000000000000000000000000000000000000000000000000000000000906
▲ (smallest number larger than one)
By default, 1/3 rounds down like [[double precision]], because of the odd number of bits in the significand.
|