Content deleted Content added
Joancharmant (talk | contribs) Fixed value of offset that has to be subtracted to get the true exponent. The error was probably a leftover from the Quadruple article. |
m Reverted edit by 2A01:CB16:201A:C683:0:67:3AB1:9A01 (talk) to last version by Vincent Lefèvre |
||
(42 intermediate revisions by 28 users not shown) | |||
Line 1:
{{short description|256-bit computer number format}}
{{use dmy dates|date=December 2022|cs1-dates=y}}
In [[computing]], '''octuple precision''' is a binary [[floating-point]]-based [[computer number format]] that occupies 32 [[byte]]s (256 [[bit]]s) in computer memory. This 256-[[bit]] octuple precision is for applications requiring results in higher than [[quadruple precision]]. This format is rarely (if ever) used and very few things support it.▼
{{use list-defined references|date=December 2022}}
{{Floating-point}}
{{Computer architecture bit widths}}
▲In [[computing]], '''octuple precision''' is a binary [[floating-point]]-based [[computer number format]] that occupies 32 [[byte]]s (256 [[bit]]s) in computer memory. This 256-[[bit]] octuple precision is for applications requiring results in higher than [[quadruple precision]].
The range greatly exceeds what is needed to describe all known physical limitations within the observable universe or precisions better than [[Planck units]].
== IEEE 754 octuple-precision binary floating-point format: binary256 ==▼
▲== IEEE 754 octuple-precision binary floating-point format: binary256 ==
In its 2008 revision, the [[IEEE 754]] standard specifies a '''binary256''' format among the ''interchange formats'' (it is not a basic format), as having:
* [[Sign bit]]: 1 bit
Line 15 ⟶ 19:
The bits are laid out as follows:
[[File:Octuple
=== Exponent encoding ===
The octuple-precision binary floating-point exponent is encoded using an [[offset binary]] representation, with the zero offset being 262143; also known as exponent bias in the IEEE 754 standard.
Line 29 ⟶ 32:
The stored exponents 00000<sub>16</sub> and 7FFFF<sub>16</sub> are interpreted specially.
{| class="wikitable" style="text-align: center;"
|-
! Exponent !! Significand zero !! Significand non-zero !! Equation
|-
| 00000<sub>16</sub> || [[0 (number)|0]], [[−0]] || [[subnormal numbers]] || (
|-
| 00001<sub>16</sub>, ..., 7FFFE<sub>16</sub> ||colspan=2| normalized value || (
|-
| 7FFFF<sub>16</sub> || ±[[infinity|∞]] || [[NaN]] (quiet,
|}
Line 44 ⟶ 48:
=== Octuple-precision examples ===
These examples are given in bit ''representation'', in [[hexadecimal]],
of the floating-point value. This includes the sign, (biased) exponent, and significand.
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
7fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
ffff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub>
= 2<sup>−262142</sup> × 2<sup>−236</sup> = 2<sup>−262378</sup>
≈ 2.24800708647703657297018614776265182597360918266100276294348974547709294462 × 10<sup>−78984</sup>
(smallest positive subnormal number)
0000 0fff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>
= 2<sup>−262142</sup> × (1 − 2<sup>−236</sup>)
≈ 2.4824279514643497882993282229138717236776877060796468692709532979137875392 × 10<sup>−78913</sup>
(largest subnormal number)
0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub>
= 2<sup>−262142</sup>
≈ 2.48242795146434978829932822291387172367768770607964686927095329791378756168 × 10<sup>−78913</sup>
(smallest positive normal number)
7fff efff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>
= 2<sup>262143</sup> × (2 − 2<sup>−236</sup>)
≈ 1.61132571748576047361957211845200501064402387454966951747637125049607182699 × 10<sup>78913</sup>
(largest normal number)
3fff efff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff<sub>16</sub>
= 1 − 2<sup>−237</sup>
≈ 0.999999999999999999999999999999999999999999999999999999999999999999999995472
(largest number less than one)
3fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub>
= 1 (one)
3fff f000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub>
= 1 + 2<sup>−236</sup>
≈ 1.00000000000000000000000000000000000000000000000000000000000000000000000906
(smallest number larger than one)
By default, 1/3 rounds down like [[double precision]], because of the odd number of bits in the significand.
So the bits beyond the rounding point are <code>0101...</code> which is less than 1/2 of a [[unit in the last place]].
== Implementations ==
Octuple precision is rarely implemented since usage of it is extremely rare. [[Apple Inc.]] had an implementation of addition, subtraction and multiplication of octuple-precision numbers with a 224-bit [[two's complement]] significand and a 32-bit exponent.<ref
=== Hardware support ===
There is
== See also ==
* [[IEEE 754]]
* [[ISO/IEC 10967]], Language-independent arithmetic
* [[Primitive data type]]
* [[Scientific notation]]
== References ==
{{reflist
<ref name="Crandall-Papadopoulos_2002">{{cite web |title=Octuple-precision floating point on Apple G4 (archived copy on web.archive.org) |author-first1=Richard E. |author-last1=Crandall |author-link1=Richard E. Crandall |author-first2=Jason S. |author-last2=Papadopoulos |date=2002-05-08 |url=http://images.apple.com/ca/acg/pdf/oct3a.pdf |url-status=unfit |archive-url=https://web.archive.org/web/20060728140052/http://images.apple.com/ca/acg/pdf/oct3a.pdf |archive-date=2006-07-28}} (8 pages)</ref>
}}
== Further reading ==
* {{cite book |author-first=Nelson H. F. |author-last=Beebe |title=The Mathematical-Function Computation Handbook - Programming Using the MathCW Portable Software Library |date=2017-08-22 |___location=Salt Lake City, UT, USA |publisher=[[Springer International Publishing AG]] |edition=1 |lccn=2017947446 |isbn=978-3-319-64109-6 |doi=10.1007/978-3-319-64110-2 }}
{{data types}}
|