Content deleted Content added
m typo |
m →Other theories of quantum physics: citation completed (journal reference) |
||
(26 intermediate revisions by 21 users not shown) | |||
Line 8:
==Background==
{{See also|Computational complexity|Complexity class}}
A [[complexity class]] is a collection of [[computational problem]]s that can be solved by a computational model under certain resource constraints. For instance, the complexity class [[P (complexity)|P]] is defined as the set of problems solvable by a [[Turing machine]] in [[polynomial time]]. Similarly, quantum complexity classes may be defined using quantum models of computation, such as the [[
One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].<ref name=":02">{{Cite
Both quantum computational complexity of functions and classical computational complexity of functions are often expressed with [[asymptotic notation]]. Some common forms of asymptotic notion of functions are <math>O(T(n))</math>, <math>\Omega(T(n))</math>, and <math>\Theta(T(n))</math>. <math>O(T(n))</math> expresses that something is bounded above by <math>cT(n)</math> where <math>c</math> is a constant such that <math>c>0</math> and <math>T(n)</math> is a function of <math>n</math>, <math>\Omega(T(n))</math> expresses that something is bounded below by <math>cT(n)</math> where <math>c</math> is a constant such that <math>c>0</math> and <math>T(n)</math> is a function of <math>n</math>, and <math>\Theta(T(n))</math> expresses both <math>O(T(n))</math> and <math>\Omega(T(n))</math>.<ref name=":12">{{Citation|last=Cleve|first=Richard|title=An Introduction to Quantum Complexity Theory|date=2000|url=http://dx.doi.org/10.1142/9789810248185_0004|work=Quantum Computation and Quantum Information Theory|pages=103–127|publisher=WORLD SCIENTIFIC|doi=10.1142/9789810248185_0004|arxiv=quant-ph/9906111|bibcode=2000qcqi.book..103C|isbn=978-981-02-4117-9|s2cid=958695|access-date=October 10, 2020}}</ref> These notations also have their own names. <math>O(T(n))</math> is called [[Big O notation]], <math>\Omega(T(n))</math> is called Big Omega notation, and <math>\Theta(T(n))</math> is called Big Theta notation.
== Overview of complexity classes ==
{| class="wikitable"
|+
Line 22:
|-
|P
|Promise problems for which a polynomial time deterministic Turing machine accepts all strings in <math>A_\text{yes}</math> and rejects all strings in <math>A_\text{no}</math><ref name=":27"/>
|-
|BPP
|Promise problems for which a polynomial time Probabilistic Turing machine accepts every string in <math>A_\text{yes}</math> with a probability of at least <math>\frac{2}{3}</math>, and accepts every string in <math>A_\text{no}</math> with a probability of at most <math>\frac{1}{3}</math><ref name=":27"/>
|-
|BQP
|Promise problems such that for functions <math>a,b:\
|-
|PP
|Promise problems for which a polynomial time Probabilistic Turing machine accepts every string in <math>A_\text{yes}</math> with a probability greater than <math>\frac{1}{2}</math>, and accepts every string in <math>A_\text{no}</math> with a probability of at most <math>\frac{1}{2}</math><ref name=":27"/>
|-
|PSPACE
|Promise problems for which a deterministic Turing machine, that runs in polynomial space, accepts every string in <math>A_\text{yes}</math> and rejects all strings in <math>A_\text{no}</math><ref name=":27"/>
|}
Line 55:
|}
[[File:BQP complexity class diagram.svg|thumb|The suspected relationship of BQP to other complexity classes
<!-- Basic definition of BQP -->
Line 61:
<!-- Relation of BQP to probabilistic complexity classes -->
As a class of probabilistic problems, BQP is the quantum counterpart to [[Bounded-error probabilistic polynomial|BPP]] ("bounded error, probabilistic, polynomial time"), the class of problems that can be efficiently solved by [[probabilistic Turing machine]]s with bounded error.<ref>{{cite book | author1-link= Michael Nielsen| author1=Nielsen, Michael |author2-link = Isaac L. Chuang |author2=Chuang, Isaac |title=Quantum Computation and Quantum Information |publisher=Cambridge University Press |___location=Cambridge |year=2000|page=41 |isbn=978-0-521-63503-5 |oclc= 174527496 |url=https://books.google.com/books?id=aai-P4V9GJ8C}}</ref> It is known that
<!-- Relation of BQP to basic deterministic complexity classes -->
The exact relationship of BQP to [[P (complexity)|P]], [[NP (complexity)|NP]], and [[PSPACE (complexity)|PSPACE]] is not known. However, it is known that
<!-- Summary of relationship to essential complexity classes -->
Line 71:
<!-- Relation of BQP to other complexity classes -->
It is also known that BQP is contained in the complexity class
== Simulation of quantum circuits ==
There is no known way to efficiently simulate a quantum computational model with a classical computer. This means that a classical computer cannot simulate a quantum computational model in polynomial time. However, a [[quantum circuit]] of <math>S(n)</math> qubits with <math>T(n)</math> quantum gates can be simulated by a classical circuit with <math>O(2^{S(n)}T(n)^3)</math> [[Logic gate|classical gates]].<ref name=":12"/> This number of classical gates is obtained by determining how many bit operations are necessary to simulate the quantum circuit. In order to do this, first the amplitudes associated with the <math>S(n)</math> qubits must be accounted for. Each of the states of the <math>S(n)</math> qubits can be described by a two-dimensional complex vector, or a state vector. These state vectors can also be described a [[linear combination]] of its [[Euclidean vector|component vectors]] with coefficients called amplitudes. These amplitudes are complex numbers which are normalized to one, meaning the sum of the squares of the absolute values of the amplitudes must be one.<ref name=":12" /> The entries of the state vector are these amplitudes.
==Quantum query complexity ==
Line 83:
==== Adjacency matrix model ====
When considering quantum computation of the solution to
==== Adjacency array model ====
Next, there is the slightly more complicated adjacency array model built on the idea of [[adjacency list]]s, where every vertex, <math>u </math>'','' is associated with an array of neighboring vertices such that <math>f_i:[d_i^+]\rightarrow[n] </math>, for the out-degrees of vertices <math>d_i^+,...,d_n^+ </math>, where <math>n </math> is the minimum value of the upper bound of this model, and <math>f_i(j) </math> returns the "<math>j^{th} </math>" vertex adjacent to <math>i </math>. Additionally, the adjacency array model satisfies the simple graph condition, <math>\forall i\in[n],j,j
=== Quantum query complexity of certain types of graph problems ===
Line 92:
{| class="wikitable"
|+
Quantum
!Problem
!Matrix
!Array
|-
|Minimum
|<math>\Theta(n^{3/2})</math>
|<math>\Theta(\sqrt{nm})</math>
Line 105:
|<math>\Theta(n)</math>
|-
|Strong
|<math>\Theta(n^{3/2})</math>
|<math>\Omega(\sqrt{nm})</math>, <math>O(\sqrt{
|-
|Single
|<math>\Omega(n^{3/2})</math>, <math>O(n^{3/2}\log^2n)</math>
|<math>\Omega(\sqrt{nm})</math>, <math>O(\sqrt{nm}\log^2(n))</math>
|}
Notice the discrepancy between the quantum query complexities associated with a particular type of problem, depending on which query model was used to determine the complexity. For example, when the matrix model is used, the quantum complexity of the connectivity model in [[Big O notation]] is <math>\Theta(n^{3/2})</math>, but when the array model is used, the complexity is <math>\Theta(n)</math>. Additionally, for brevity, we use the shorthand <math>m</math> in certain cases, where <math>m=\Theta(n^2)</math>.<ref name=":0" /> The important implication here is that the efficiency of the algorithm used to solve a graphing problem is dependent on the type of query model used to model the graph.
Line 124:
==== Deutsch-Jozsa algorithm ====
The [[Deutsch-Jozsa algorithm]] is a quantum algorithm designed to solve a toy problem with a smaller query complexity than is possible with a classical algorithm. The toy problem asks whether a function <math>f:\{0,1\}^n\rightarrow\{0,1\}</math> is constant or balanced, those being the only two possibilities.<ref name=":32"/> The only way to evaluate the function <math>f</math> is to consult a [[black box]] or [[Oracle machine|oracle]]. A classical [[deterministic algorithm]] will have to check more than half of the possible inputs to be sure of whether or not the function is constant or balanced. With <math>2^n</math> possible inputs, the query complexity of the most efficient classical deterministic algorithm is <math>2^{n-1}+1</math>.<ref name=":32" /> The Deutsch-Jozsa algorithm takes advantage of quantum parallelism to check all of the elements of the ___domain at once and only needs to query the oracle once, making its query complexity <math>1</math>.<ref name=":32" />
==Other theories of quantum physics==
It has been speculated that further advances in physics could lead to even faster computers. For instance, it has been shown that a non-local, but non-signaling hidden variable quantum computer could implement a search of an {{mvar|N}}-item database in at most <math>O(\sqrt[3]{N})</math> steps, a slight speedup over [[Grover's algorithm]], which runs in <math>O(\sqrt{N})</math> steps. Note, however, that neither search method would allow quantum computers to solve [[NP-complete]] problems in polynomial time.<ref name="auto">{{cite journal |title=Quantum Computing and Hidden Variables |last=Aaronson |first=Scott |journal=Phys. Rev. A |volume=71 |pages=032325 |date=2005 |doi=10.1103/PhysRevA.71.032325 |arxiv=quant-ph/0408035 |url=http://www.scottaaronson.com/papers/qchvpra.pdf}}</ref> Theories of [[quantum gravity]], such as [[M-theory]] and [[loop quantum gravity]], may allow even faster computers to be built. However, defining computation in these theories is an open problem due to the [[problem of time]]; that is, within these physical theories there is currently no obvious way to describe what it means for an observer to submit input to a computer at one point in time and then receive output at a later point in time.<ref>{{Cite journal |first=Scott |last=Aaronson |title=NP-complete Problems and Physical Reality |journal=ACM SIGACT News |volume=2005 |arxiv=quant-ph/0502072 |year=2005 |bibcode=2005quant.ph..2072A |author-link=Scott Aaronson}} See section 7 "Quantum Gravity": "[...] to anyone who wants a test or benchmark for a favorite quantum gravity theory,[author's footnote: That is, one without all the bother of making numerical predictions and comparing them to observation] let me humbly propose the following: ''can you define Quantum Gravity Polynomial-Time?'' [...] until we can say what it means for a 'user' to specify an 'input' and 'later' receive an 'output'—''there is no such thing as computation, not even theoretically.''" (emphasis in original)</ref><ref>{{cite web |url=http://www.dwavesys.com/en/pressreleases.html#lm_2011 |title=D-Wave Systems sells its first Quantum Computing System to Lockheed Martin Corporation |access-date=30 May 2011 |date=25 May 2011 |publisher=D-Wave |archive-date=22 December 2020 |archive-url=https://web.archive.org/web/20201222041457/https://www.dwavesys.com/en/pressreleases.html#lm_2011 |url-status=dead }}</ref>
==See also==
Line 149 ⟶ 153:
[[Category:Quantum complexity theory| ]]
[[Category:Computational complexity theory]]
[[Category:Theoretical computer science]]
|