Content deleted Content added
→Decomposition: rm relevance tag that appears to misunderstand the decomposition; the point is to decompose arbitrary sym indef matrices, not the sym form of one of the factors |
→Basic properties: Redundant clause* AB symmetry operated on by the diagonal... Tags: Mobile edit Mobile web edit |
||
(6 intermediate revisions by 6 users not shown) | |||
Line 49:
* This is not always true for the [[matrix multiplication|product]]: given symmetric matrices <math>A</math> and <math>B</math>, then <math>AB</math> is symmetric if and only if <math>A</math> and <math>B</math> [[commutativity|commute]], i.e., if <math>AB=BA</math>.
* For any integer <math>n</math>, <math>A^n</math> is symmetric if <math>A</math> is symmetric.
* Rank of a symmetric matrix <math>A</math> is equal to the number of non-zero eigenvalues of <math>A</math>.
Line 77 ⟶ 76:
The finite-dimensional [[spectral theorem]] says that any symmetric matrix whose entries are [[real number|real]] can be [[diagonal matrix|diagonalized]] by an [[orthogonal matrix]]. More explicitly: For every real symmetric matrix <math>A</math> there exists a real orthogonal matrix <math>Q</math> such that <math>D = Q^{\mathrm T} A Q</math> is a [[diagonal matrix]]. Every real symmetric matrix is thus, [[up to]] choice of an [[orthonormal basis]], a diagonal matrix.
If <math>A</math> and <math>B</math> are <math>n \times n</math> real symmetric matrices that commute, then they can be simultaneously diagonalized by an orthogonal matrix:<ref>{{Cite book|
Every real symmetric matrix is [[Hermitian matrix|Hermitian]], and therefore all its [[eigenvalues]] are real. (In fact, the eigenvalues are the entries in the diagonal matrix <math>D</math> (above), and therefore <math>D</math> is uniquely determined by <math>A</math> up to the order of its entries.) Essentially, the property of being symmetric for real matrices corresponds to the property of being Hermitian for complex matrices.
=== Complex symmetric matrices {{anchor|Complex}}===
A complex symmetric matrix can be 'diagonalized' using a [[unitary matrix]]: thus if <math>A</math> is a complex symmetric matrix, there is a unitary matrix <math>U</math> such that <math>U A U^{\mathrm T}</math> is a real diagonal matrix with non-negative entries. This result is referred to as the '''Autonne–Takagi factorization'''. It was originally proved by [[Léon Autonne]] (1915) and [[Teiji Takagi]] (1925) and rediscovered with different proofs by several other mathematicians.<ref>{{
*{{citation|first=L.|last= Autonne|title= Sur les matrices hypohermitiennes et sur les matrices unitaires|journal= Ann. Univ. Lyon|volume= 38|year=1915|pages= 1–77|url=https://gallica.bnf.fr/ark:/12148/bpt6k69553b}}
*{{citation|first=T.|last= Takagi|title= On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau|journal= Jpn. J. Math.|volume= 1 |year=1925|pages= 83–93|doi= 10.4099/jjm1924.1.0_83|doi-access= free}}
Line 99 ⟶ 98:
<math display="block">A = LL^\textsf{T}.</math>
If the matrix is symmetric indefinite, it may be still decomposed as <math>PAP^\textsf{T} = LDL^\textsf{T}</math> where <math>P</math> is a permutation matrix (arising from the need to [[pivot element|pivot]]), <math>L</math> a lower unit triangular matrix, and <math>D</math> is a direct sum of symmetric <math>1 \times 1</math> and <math>2 \times 2</math> blocks, which is called Bunch–Kaufman decomposition <ref>{{cite book |
A general (complex) symmetric matrix may be [[defective matrix|defective]] and thus not be [[diagonalizable]]. If <math>A</math> is diagonalizable it may be decomposed as
Line 109 ⟶ 108:
== Hessian ==
Symmetric <math>n \times n</math> matrices of real functions appear as the [[Hessian matrix|Hessians]] of twice differentiable functions of <math>n</math> real variables (the continuity of the second derivative is not needed, despite common belief to the opposite<ref>{{Cite book |last=Dieudonné |first=Jean A. |title=Foundations of Modern Analysis |publisher=Academic Press |year=1969 |
Every [[quadratic form]] <math>q</math> on <math>\mathbb{R}^n</math> can be uniquely written in the form <math>q(\mathbf{x}) = \mathbf{x}^\textsf{T} A \mathbf{x}</math> with a symmetric <math>n \times n</math> matrix <math>A</math>. Because of the above spectral theorem, one can then say that every quadratic form, up to the choice of an orthonormal basis of <math>\R^n</math>, "looks like"
Line 148 ⟶ 147:
== References ==
{{refbegin}}
*{{citation|
{{refend}}
== External links ==
Line 157 ⟶ 158:
{{Authority control}}
[[Category:Matrices (mathematics)]]
|