Content deleted Content added
BryceMW-CA (talk | contribs) Changed my mind based on all the microarch infoboxes Tags: Mobile edit Mobile app edit iOS app edit |
GreenC bot (talk | contribs) Rescued 5 archive links. Wayback Medic 2.5 per WP:URLREQ#anandtech.com |
||
(8 intermediate revisions by 7 users not shown) | |||
Line 36:
| fsb-slow-unit = [[Transfer (computing)|MT/s]]
| fsb-fast-unit = MT/s
| arch = [[x86-16]], [[
| microarch = Core
| extensions = [[MMX (instruction set)|MMX]], [[Streaming SIMD Extensions|SSE]], [[SSE2]], [[SSE3]], [[SSSE3]], [[SSE4]], [[VT-x]] (some)
| sock1 = [[Socket M]] (
| sock2 = [[Socket P]] (
| sock3 = [[Socket T]] ([[LGA 775]])
| sock4 = [[Socket J]] ([[LGA 771]])
| sock5 = [[Socket 604]]
| sock6 = [[Micro-FCBGA|FCBGA]] (
| sock7 = [[Micro-FCBGA|FCBGA]] (
| predecessor = [[NetBurst]]<br/>[[Enhanced Pentium M (microarchitecture)|Enhanced Pentium M]] ([[P6 (microarchitecture)|P6]])
| successor = [[Penryn (microarchitecture)|Penryn (tick)]]<br/>(a version of Core)<br/>[[Nehalem (microarchitecture)|Nehalem (tock)]]
Line 51:
}}
The '''Intel Core microarchitecture''' (provisionally referred to as '''Next Generation Micro-architecture''',<ref>{{cite web |last1=Bessonov |first1=Oleg |title=New Wine into Old Skins. Conroe: Grandson of Pentium III, Nephew of NetBurst? |url=http://ixbtlabs.com/articles2/cpu/p6-nexgen.html |website=ixbtlabs.com |date=9 September 2005}} Note that all mentions of "Next-Generation Micro-architecture" in Intel's slides have asterisks that warn that "micro-architecture name [[To be determined|TBD]]".</ref> and developed as '''Merom''')<ref name="hinton">{{cite web |last1=Hinton |first1=Glenn |title=Key Nehalem Choices |url=https://web.stanford.edu/class/ee380/Abstracts/100217-slides.pdf |date=17 February 2010}}</ref> is a multi-core [[central processing unit|processor]] [[microarchitecture]] launched by [[Intel]] in mid-2006. It is a major evolution over the [[Yonah (microprocessor)|Yonah]], the previous iteration of the [[P6 (microarchitecture)|P6 microarchitecture series]] which started in 1995 with [[Pentium Pro]]. It also replaced the [[NetBurst]] microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient [[Pipeline (computing)|pipeline]] designed for high [[clock rate]]. In early 2004,
The first processors that used this architecture were code-named '[[Merom (microprocessor)|Merom]]', '[[Conroe (microprocessor)|Conroe]]', and '[[Woodcrest (microprocessor)|Woodcrest]]'; Merom is for mobile computing, Conroe is for desktop systems, and Woodcrest is for servers and workstations. While architecturally identical, the three processor lines differ in the socket used, bus speed, and power consumption. The first Core-based desktop and mobile processors were branded ''[[Intel Core 2|Core 2]]'', later expanding to the lower-end ''[[Pentium Dual-Core]]'', ''[[Pentium]]'' and ''[[Celeron]]'' brands; while server and workstation Core-based processors were branded ''[[Xeon]]''.
Line 70:
==Technology==
[[Image:Intel Core2 arch.svg|right|thumb|upright=2|Intel Core microarchitecture]]
While the Core microarchitecture is a major architectural revision, it is based in part on the [[Pentium M]] processor family designed by Intel Israel.<ref>{{cite web |url=http://seattletimes.nwsource.com/html/businesstechnology/2003658346_intelisrael09.html |title=How Israel saved Intel |last=King |first=Ian |publisher=The Seattle Times |date=April 9, 2007 |access-date=April 15, 2012}}</ref> The [[Pipeline (computing)|pipeline]] of Core/[[Penryn (microarchitecture)|Penryn]] is 14 stages long<ref>{{cite web |title=Driving energy-efficient performance, innovation with Intel Core microarchitecture |url=https://www.intel.com/pressroom/kits/events/idfspr_2006/BackgrounderIDF.pdf |publisher=Intel |date=7 March 2006}}</ref> – less than half of [[Pentium 4#Prescott|Prescott]]'s. Penryn's successor [[Nehalem (microarchitecture)|Nehalem]] has a two cycles higher branch misprediction penalty than Core/Penryn.<ref>{{cite web |last1=De Gelas |first1=Johan |title=The Bulldozer Aftermath: Delving Even Deeper |url=https://www.anandtech.com/show/5057/the-bulldozer-aftermath-delving-even-deeper/2 |archive-url=https://web.archive.org/web/20120601190408/http://www.anandtech.com/show/5057/the-bulldozer-aftermath-delving-even-deeper/2 |url-status=dead |archive-date=June 1, 2012 |website=[[AnandTech]]}}</ref><ref>{{cite web |last1=Thomadakis |first1=Michael Euaggelos |title=The Architecture of the Nehalem Processor and Nehalem-EP SMP Platforms |url=https://www.researchgate.net/publication/235960679}}</ref> Core can ideally sustain up to 4 [[instructions per cycle]] (IPC) execution rate, compared to the 3 IPC capability of [[P6 (microarchitecture)|P6]], [[Pentium M (microarchitecture)|Pentium M]] and [[NetBurst]] microarchitectures. The new architecture is a dual core design with a shared [[L2 cache]] engineered for maximum [[performance per watt]] and improved scalability.
One new technology included in the design is [[Macro-Ops Fusion]], which combines two [[x86]] instructions into a single [[micro-operation]]. For example, a common code sequence like a compare followed by a conditional jump would become a single micro-op. However, this technology does not work in 64-bit mode.
Core can speculatively execute [[Memory disambiguation#RAW dependence violations|loads ahead of preceding stores]] with unknown addresses.<ref>{{cite web |last1=De Gelas |first1=Johan |title=Intel Core versus AMD's K8 architecture |url=https://www.anandtech.com/show/1998/5 |archive-url=https://web.archive.org/web/20101107020630/http://www.anandtech.com/show/1998/5 |url-status=dead |archive-date=November 7, 2010 |website=[[AnandTech]]}}</ref>
Other new technologies include 1 cycle throughput (2 cycles previously) of all 128-bit SSE instructions and a new power saving design. All components will run at minimum speed, raising speed dynamically as needed (similar to AMD's [[Cool'n'Quiet]] power-saving technology, and Intel's own [[SpeedStep]] technology from earlier mobile processors). This allows the chip to produce less heat, and minimize power use.
Line 80:
For most Woodcrest CPUs, the [[front-side bus]] (FSB) runs at 1333 [[MT/s]]; however, this is scaled down to 1066 MT/s for lower end 1.60 and 1.86 GHz variants.<ref>{{cite web |url=http://processorfinder.intel.com/details.aspx?sSpec=SL9RZ |title=Intel Xeon Processor 5110 |access-date=April 15, 2012 |publisher=Intel}}</ref><ref>{{cite web |url=http://processorfinder.intel.com/details.aspx?sSpec=SL9Ry |title=Intel Xeon Processor 5120 |publisher=Intel |access-date=April 15, 2012}}</ref> The Merom mobile variant was initially targeted to run at an FSB of 667 MT/s while the second wave of Meroms, supporting 800 MT/s FSB, were released as part of the Santa Rosa platform with a different socket in May 2007. The desktop-oriented Conroe began with models having an FSB of 800 MT/s or 1066 MT/s with a 1333 MT/s line officially launched on July 22, 2007.
The power use of these processors is very low: average energy use is to be in the 1–2 watt range in ultra
Previously, Intel announced that it would now focus on power efficiency, rather than raw performance. However, at [[Intel Developer Forum]] (IDF) in spring 2006, Intel advertised both. Some of the promised numbers were:
Line 247:
In Intel's [[Intel Tick-Tock|Tick-Tock]] cycle, the 2007/2008 "Tick" was the shrink of the Core microarchitecture to 45 nanometers as CPUID model 23. In Core 2 processors, it is used with the code names Penryn (Socket P), Wolfdale (LGA 775) and Yorkfield (MCM, LGA 775), some of which are also sold as Celeron, Pentium and Xeon processors. In the Xeon brand, the [[Xeon#5200-series "Wolfdale-DP"|Wolfdale-DP]] and [[Xeon#5400-series "Harpertown"|Harpertown]] code names are used for LGA 771 based MCMs with two or four active Wolfdale cores.
Architecturally, 45 nm Core 2 processors feature SSE4.1 and new divide/shuffle engine.<ref>{{Cite web|url=http://www.anandtech.com/show/2362|archive-url=https://web.archive.org/web/20100505135238/http://www.anandtech.com/show/2362|url-status=dead|archive-date=May 5, 2010|title = Intel Core 2 Extreme QX9650 - Penryn Ticks Ahead}}</ref>
The chips come in two sizes, with 6 MB and 3 MB L2 cache. The smaller version is commonly called Penryn-3M and Wolfdale-3M and Yorkfield-6M, respectively. The single-core version of Penryn, listed as Penryn-L here, is not a separate model like Merom-L but a version of the Penryn-3M model with only one active core.
Line 304:
| [[List of Intel Celeron microprocessors#"Penryn-3M" (standard-voltage, 45 nm) 2|T3xxx]] || rowspan=2 | 2 || rowspan=2|1 MB || Socket P || 35 W
|-
| [[List of Intel Celeron microprocessors#"Penryn-3M" (ultra-low-voltage, 45 nm) 2|SU2xxx]] ||
|-
| rowspan=2 | Penryn-L
| [[List of Intel Celeron microprocessors#"Penryn-3M" (standard-voltage, 45 nm)|9x0]] || rowspan=2 | 1 || rowspan=2|1 MB || Socket P || 35 W
|-
| [[List of Intel Celeron microprocessors#"Penryn-3M" (ultra-low-voltage, 45 nm)|7x3]] ||
|-
| rowspan=2 | Penryn-3M
Line 315:
| [[List of Intel Pentium microprocessors#"Penryn-3M" (standard voltage, 45 nm)|T4xxx]]|| rowspan=2 | 2 || 1 MB || Socket P || 35 W
|-
| [[List of Intel Pentium microprocessors#"Penryn-3M" (ultra-low voltage, 45 nm)|SU4xxx]] || rowspan=2|2 MB || rowspan=2|
|-
| Penryn-L
Line 448:
|-
! B2
| Jul 2006 || 143 mm
| [[List of Intel Celeron microprocessors#"Merom", "Merom-L" (standard-voltage, 65 nm)|M5xx]] || || [[List of Intel Core 2 microprocessors#"Merom" (standard-voltage, 65 nm)|T5000 T7000]] [[List of Intel Core 2 microprocessors#"Merom" (low-voltage, 65 nm)|L7000]]
| || || [[List of Intel Core 2 microprocessors#"Conroe" (65 nm)|E6000 X6000]]
Line 455:
|-
! B3
| Nov 2006 || 143 mm
| || ||
| || || ||
Line 463:
|-
! L2
| Jan 2007 || 111 mm
| || || [[List of Intel Core 2 microprocessors#"Merom" (standard-voltage, 65 nm)|T5000]] [[List of Intel Core 2 microprocessors#"Merom-2M" (ultra-low-voltage, 65 nm)|U7000]]
| || [[List of Intel Pentium Dual-Core microprocessors#"Allendale" (65 nm)|E2000]]
Line 472:
|-
! E1
| May 2007 || 143 mm
| [[List of Intel Celeron microprocessors#"Merom", "Merom-L" (standard-voltage, 65 nm)|M5xx]] ||
| [[List of Intel Core 2 microprocessors#"Merom" (standard-voltage, 65 nm)|T7000]] [[List of Intel Core 2 microprocessors#"Merom" (low-voltage, 65 nm)|L7000]] [[List of Intel Core 2 microprocessors#"Merom XE" (standard-voltage, 65 nm)|X7000]]
Line 480:
|-
! G0
| Apr 2007 || 143 mm
| [[List of Intel Celeron microprocessors#"Merom", "Merom-L" (standard-voltage, 65 nm)|M5xx]] || || [[List of Intel Core 2 microprocessors#"Merom" (standard-voltage, 65 nm)|T7000]] [[List of Intel Core 2 microprocessors#"Merom" (low-voltage, 65 nm)|L7000]] [[List of Intel Core 2 microprocessors#"Merom XE" (standard-voltage, 65 nm)|X7000]]
| || [[List of Intel Pentium Dual-Core microprocessors#"Conroe" (65 nm)|E2000]] || [[List of Intel Core 2 microprocessors#"Allendale" (65 nm)|E4000]] [[List of Intel Core 2 microprocessors#"Conroe" (65 nm)|E6000]] || [[List of Intel Xeon microprocessors#"Conroe" (65 nm)|3000]]
Line 488:
|-
! G2
| Mar 2009<ref>{{cite web|url=https://qdms.intel.com/dm/i.aspx/AFFA9254-C0C8-4D98-97B7-1F89751F9933/PCN108529-03.pdf|title=Intel Core 2 Duo Mobile Processors T7400 & L7400 and Intel Celeron M Processor 530 (Merom - Napa Refresh), PCN 108529-03, Product Design, B-2 to G-2 Stepping Conversion, Reason for Revision: Change G-0 to G-2 Stepping and Correct Post Conversion MM#|publisher=Intel|date=March 30, 2009}}</ref> || 143 mm
| [[List of Intel Celeron microprocessors#"Merom", "Merom-L" (standard-voltage, 65 nm)|M5xx]] ||
| [[List of Intel Core 2 microprocessors#"Merom-2M" (standard-voltage, 65 nm)|T5000]] [[List of Intel Core 2 microprocessors#"Merom" (standard-voltage, 65 nm)|T7000]] [[List of Intel Core 2 microprocessors#"Merom" (low-voltage, 65 nm)|L7000]]
Line 496:
|-
! M0
| Jul 2007 || 111 mm
| [[List of Intel Celeron microprocessors#"Merom-2M" (standard-voltage, 65 nm)|5xx]] [[List of Intel Celeron microprocessors#Celeron T1000|T1000]]
| [[List of Intel Pentium Dual-Core microprocessors#"Merom-M", "Merom-2M" (65 nm)|T2000 T3000]]
Line 507:
|-
! A1
| Jun 2007 || 81 mm
| [[List of Intel Celeron microprocessors#"Merom", "Merom-L" (standard-voltage, 65 nm)|M5xx]] || || [[List of Intel Core 2 microprocessors#"Merom-L" (ultra-low-voltage, 65 nm)|U2000]]
| [[List of Intel Celeron microprocessors#"Conroe-L" (65 nm)|220 4x0]] || || ||
Line 545:
|-
! C0
| Nov 2007 || 107 mm
| || || [[List of Intel Core 2 microprocessors#"Penryn" (Apple iMac specific, 45 nm)|E8000]] [[List of Intel Core 2 microprocessors#"Penryn-3M" (medium-voltage, 45 nm)|P7000]] [[List of Intel Core 2 microprocessors#"Penryn-3M" (standard-voltage, 45 nm)|T8000]] [[List of Intel Core 2 microprocessors#"Penryn" (standard-voltage, 45 nm)|T9000]] [[List of Intel Core 2 microprocessors#"Penryn" (medium-voltage, 45 nm)|P9000]] [[List of Intel Core 2 microprocessors#"Penryn" (medium-voltage, 45 nm, Small Form Factor)|SP9000]] [[List of Intel Core 2 microprocessors#"Penryn" (low-voltage, 45 nm, Small Form Factor)|SL9000]] [[List of Intel Core 2 microprocessors#"Penryn XE" (standard-voltage, 45 nm)|X9000]]
| || || [[List of Intel Core 2 microprocessors#"Wolfdale" (45 nm)|E8000]] || [[List of Intel Xeon microprocessors#"Wolfdale" (45 nm)|3100]]
Line 552:
|-
! M0
| Mar 2008 || 82 mm
| [[List of Intel Celeron microprocessors#"Penryn-3M" (ultra-low-voltage, 45 nm)|7xx]] ||
| [[List of Intel Core 2 microprocessors#"Penryn-3M" (ultra-low-voltage, 45 nm, Small Form Factor)|SU3000]] [[List of Intel Core 2 microprocessors#"Penryn-3M" (medium-voltage, 45 nm)|P7000 P8000]] [[List of Intel Core 2 microprocessors#"Penryn-3M" (standard-voltage, 45 nm)|T8000]] [[List of Intel Core 2 microprocessors#"Penryn-3M" (ultra-low-voltage, 45 nm, Small Form Factor)|SU9000]]
Line 561:
|-
! C1
| Mar 2008 || 107 mm
| || ||
| || ||
Line 569:
|-
! M1
| Mar 2008 || 82 mm
| || ||
| || ||
Line 577:
|-
! E0
| Aug 2008 || 107 mm
| || || [[List of Intel Core 2 microprocessors#"Penryn" (standard-voltage, 45 nm)|T9000]] [[List of Intel Core 2 microprocessors#"Penryn" (medium-voltage, 45 nm)|P9000]] [[List of Intel Core 2 microprocessors#"Penryn" (medium-voltage, 45 nm, Small Form Factor)|SP9000]] [[List of Intel Core 2 microprocessors#"Penryn" (low-voltage, 45 nm, Small Form Factor)|SL9000]] [[List of Intel Core 2 microprocessors#"Penryn QC" (standard-voltage, 45 nm)|Q9000]] [[List of Intel Core 2 microprocessors#"Penryn QC XE" (standard-voltage, 45 nm)|QX9000]]
| || || [[List of Intel Core 2 microprocessors#"Wolfdale" (45 nm)|E8000]]
Line 586:
|-
! R0
| Aug 2008 || 82 mm
| [[List of Intel Celeron microprocessors#"Penryn-3M" (ultra-low-voltage, 45 nm)|7xx]] [[List of Intel Celeron microprocessors#"Penryn-3M" (standard-voltage, 45 nm)|900]] [[List of Intel Celeron microprocessors#Celeron SU2000|SU2000]] [[List of Intel Celeron microprocessors#Celeron T3000|T3000]] || [[List of Intel Pentium microprocessors#"Penryn-3M" (standard voltage, 45 nm)|T4000]][[List of Intel Pentium microprocessors#"Penryn-L" (ultra-low voltage, 45 nm)|SU2000]] [[List of Intel Pentium microprocessors#"Penryn-3M" (ultra-low voltage, 45 nm)|SU4000]] || [[List of Intel Core 2 microprocessors#"Penryn-3M" (ultra-low-voltage, 45 nm, Small Form Factor)|SU3000]] [[List of Intel Core 2 microprocessors#"Penryn-3M" (standard-voltage, 45 nm)|T6000]] [[List of Intel Core 2 microprocessors#"Penryn-3M" (ultra-low-voltage, 45 nm, Small Form Factor)|SU7000]] [[List of Intel Core 2 microprocessors#"Penryn-3M" (medium-voltage, 45 nm)|P8000]] [[List of Intel Core 2 microprocessors#"Penryn-3M" (ultra-low-voltage, 45 nm, Small Form Factor)|SU9000]]
| [[List of Intel Celeron microprocessors#"Wolfdale-3M" (45 nm)|E3000]] || [[List of Intel Pentium Dual-Core microprocessors#"Wolfdale-3M" (45 nm)|E5000]] [[List of Intel Pentium microprocessors#"Wolfdale-3M" (45 nm) 2|E6000]]
Line 595:
|-
! A1
| Sep 2008 || 503 mm
| || ||
| || ||
Line 606:
In mobile processors, stepping C0/M0 is only used in the Intel Mobile 965 Express ([[Centrino#Santa Rosa platform (2007)|Santa Rosa refresh]]) platform, whereas stepping E0/R0 supports the later Intel Mobile 4 Express ([[Centrino#Montevina platform (2008)|Montevina]]) platform.
Model 30 stepping A1 (cpuid 106d1h) adds an L3 cache and six instead of the usual two cores, which leads to an unusually large die size of 503 mm
==System requirements==
Line 620:
* [[ATI Technologies|ATI]]: [[Xpress 200|Radeon Xpress 200]] and CrossFire Xpress 3200 for Intel
The Yorkfield XE model QX9770 (45 nm with 1600 MT/s FSB) has limited chipset compatibility - with only X38, P35 (
Although a motherboard may have the required chipset to support Conroe, some motherboards based on the above-mentioned chipsets do not support Conroe. This is because all Conroe-based processors require a new power delivery feature set specified in [http://download.intel.com/design/processor/applnots/31321402.pdf Voltage Regulator-Down (VRD) 11.0]. This requirement is a result of Conroe's significantly lower power consumption, compared to the Pentium 4/D CPUs it replaced. A motherboard that has both a supporting chipset and VRD 11 supports Conroe processors, but even then some boards will need an updated [[BIOS]] to recognize Conroe's FID (Frequency ID) and VID (Voltage ID).
Line 702:
*[http://www.intel.com/products/roadmap/ Intel processor roadmap]
*[https://web.archive.org/web/20070415163814/http://www.pcper.com/article.php?aid=217 A Detailed Look at Intel's New Core Architecture]
*[https://web.archive.org/web/20060310044430/http://anandtech.com/tradeshows/showdoc.aspx?i=2711&p=2 Intel names the Core Microarchitecture]
*[https://web.archive.org/web/20060717124332/http://www.xbitlabs.com/articles/editorial/display/idf-s2006_5.html Pictures of processors using the Core Microarchitecture, among others (also first mention of Clovertown-MP)]
*[https://web.archive.org/web/20060322051611/http://www.tgdaily.com/2006/03/07/idf_keynotes_welcome_to_intel_3-point-0/ IDF keynotes, advertising the performance of the new processors]
Line 708:
*[http://www.realworldtech.com/page.cfm?ArticleID=RWT030906143144 RealWorld Tech's overview of the Core microarchitecture]
*[https://arstechnica.com/articles/paedia/cpu/core.ars Detailed overview of the Core microarchitecture at Ars Technica]
*[https://archive.today/20130117023531/http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2748 Intel Core versus AMD's K8 architecture at Anandtech]
*[https://web.archive.org/web/20110810020619/http://www.dailytech.com/article.aspx?newsid=2015 Release dates of upcoming Intel Core processors using the Intel Core Microarchitecture]
*[http://www.hexus.net/content/item.php?item=6184 Benchmarks Comparing the Computational Power of Core Architecture against Older Intel NetBurst and AMD Athlon64 Central Processing Units]
Line 717:
[[Category:Intel microarchitectures|Core]]
[[Category:X86 microarchitectures|Core]]
[[Category:Computer-related introductions in 2006]]
|