Content deleted Content added
m →NMOS and back-gate bias: pointed "Apple II" wikilink to "Apple II series" -- (disambiguation) |
Tag: references removed |
||
(13 intermediate revisions by 11 users not shown) | |||
Line 1:
{{short description|Form of digital logic family in integrated circuits}}
[[File:Nmos depletion and.svg|right|thumb|A depletion-load and two enhancement-mode NMOS transistor making up [[NAND gate]].]]
In [[integrated circuit]]s, '''depletion-load NMOS''' is a form of digital [[logic family]] that uses only a single power supply voltage, unlike earlier [[NMOS logic|NMOS]] (n-type [[metal-oxide semiconductor]]) logic families that needed
[[Depletion and enhancement modes|Depletion-mode]] n-type [[MOSFET]]s as load transistors allow single voltage operation and achieve greater speed than possible with
The inclusion of depletion-mode NMOS transistors in the [[Semiconductor device fabrication|manufacturing process]] demanded additional manufacturing steps compared to the simpler enhancement-load circuits; this is because depletion-load devices are formed by increasing the amount of [[dopant]] in the load transistors channel region, in order to adjust their [[threshold voltage]]. This is normally performed using [[ion implantation]].
Line 13:
{{See also|NMOS logic#History}}
Following the invention of the [[MOSFET]] by [[Mohamed Atalla]] and [[Dawon Kahng]] at [[Bell Labs]] in 1959, they demonstrated MOSFET technology in 1960.<ref name="computerhistory">{{cite journal|url=https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/|title=1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated|journal=The Silicon Engine|publisher=[[Computer History Museum]]}}</ref> They [[Semiconductor device fabrication|fabricated]] both [[PMOS logic|PMOS]] and NMOS devices with a [[10
In 1965, [[Chih-Tang Sah]], Otto Leistiko and [[Andrew Grove|A.S. Grove]] at [[Fairchild Semiconductor]] fabricated several NMOS devices with channel lengths between [[10
===Silicon gate===
Line 23:
There are a couple of drawbacks associated with PMOS: The [[electron hole]]s that are the charge (current) carriers in PMOS transistors have lower mobility than the [[electron]]s that are the charge carriers in NMOS transistors (a ratio of approximately 2.5), furthermore PMOS circuits do not interface easily with low voltage positive logic such as [[Diode–transistor logic|DTL-logic]] and [[Transistor–transistor logic|TTL-logic]] (the 7400-series). However, PMOS transistors are relatively easy to make and were therefore developed first — ionic contamination of the gate oxide from [[Etching (microfabrication)|etching chemical]]s and other sources can very easily prevent (the [[electron]] based) NMOS transistors from switching off, while the effect in (the [[electron-hole]] based) PMOS transistors is much less severe. Fabrication of NMOS transistors therefore has to be many times cleaner than bipolar processing in order to produce working devices.
Early work on NMOS integrated circuit (IC) technology was presented in a brief [[IBM]] paper at [[ISSCC]] in 1969. [[Hewlett-Packard]] then started to develop NMOS IC technology to get the promising speed and easy interfacing for its calculator business.<ref>These calculators (like the [[Datapoint 2200]] and others) were in many ways small [[desktop computer]]s, but preceded the [[
The production-ready NMOS process enabled HP to develop the industry’s first 4-kbit IC [[Read-only memory|ROM]]. [[Motorola]] eventually served as a second source for these products and so became one of the first commercial semiconductor vendors to master the NMOS process, thanks to Hewlett-Packard. A while later, the startup company [[Intel]] announced a 1-kbit pMOS DRAM, called ''1102'', developed as a custom product for [[Honeywell]] (an attempt to replace magnetic [[core memory]] in their [[mainframe computer]]s). HP’s calculator engineers, who wanted a similar but more robust product for the [[HP 9800 series|9800 series]] calculators, contributed IC fabrication experience from their 4-kbit ROM project to help improve Intel DRAM’s reliability, operating-voltage, and temperature range. These efforts contributed to the heavily enhanced
===Depletion-mode transistors===
Line 32:
Early MOS logic had one transistor type, which is [[enhancement mode]] so that it can act as a logic switch. Since suitable resistors were hard to make, the logic gates used saturated loads; that is, to make the one type of transistor act as a load resistor, the transistor had to be turned always on by tying its gate to the power supply (the more negative rail for [[PMOS logic]], or the more positive rail for [[NMOS logic]]). Since the current in a device connected that way goes as the square of the voltage across the load, it provides poor pullup speed relative to its power consumption when pulled down. A resistor (with the current simply proportional to the voltage) would be better, and a current source (with the current fixed, independent of voltage) better yet. A [[depletion-mode]] device with gate tied to the opposite supply rail is a much better load than an enhancement-mode device, acting somewhere between a resistor and a current source.
The first depletion-load NMOS circuits were pioneered and made by the [[Dynamic random-access memory|DRAM]] manufacturer [[Mostek]], which made depletion-mode transistors available for the design of the original [[Zilog Z80]] in 1975–76.<ref>''Zilog relied on [[Mostek]] and [[Synertek]] to produce the Z80 and other chips before their own production facilities were ready.''</ref> Mostek had the [[ion implantation]] equipment needed to create a [[doping (semiconductor)|doping profile]] more precise than possible with [[diffusion]] methods, so that the [[threshold voltage]] of the load transistors could be adjusted reliably. At Intel, depletion load was introduced in 1974 by Federico Faggin, an ex-Fairchild engineer and later the founder of [[Zilog]]. Depletion-load was first employed for a redesign of one of Intel's most important products at the time, a +5V-only 1Kbit NMOS [[Static random-access memory|SRAM]] called the ''2102'' (using more than 6000 transistors<ref>''Each bit demands six transistors in a typical [[static random-access memory|static RAM]].''</ref>). The result of this redesign was the significantly faster ''2102A'', where the highest performing versions of the chip had access times of less than 100ns, taking MOS memories close to the speed of bipolar RAMs for the first time.<ref>''See for instance: http://www.intel4004.com/sgate.htm or http://archive.computerhistory.org/resources/text/Oral_History/Faggin_Federico/Faggin_Federico_1_2_3.oral_history.2004.102658025.pdf'' {{Webarchive|url=https://web.archive.org/web/20170110232713/http://archive.computerhistory.org/resources/text/Oral_History/Faggin_Federico/Faggin_Federico_1_2_3.oral_history.2004.102658025.pdf |date=2017-01-10 }}</ref>
Depletion-load NMOS processes were also used by several other manufacturers to produce many incarnations of popular 8-bit, 16-bit, and 32-bit CPUs. Similarly to early PMOS and NMOS CPU designs using [[Channel (transistor)|enhancement mode]] MOSFETs as loads, depletion-load nMOS designs typically employed various types of [[dynamic logic (digital
A large number of support and peripheral ICs were also implemented using (often static) depletion-load based circuitry. However,
Line 40:
===Intel HMOS===
{{redirect|HMOS|operating system|HarmonyOS}}
Intel's own depletion-load NMOS process was known as '''HMOS''', for ''High density, short channel MOS''. The first version was introduced in late 1976 and first used for their [[static RAM]] products,<ref>{{cite journal |first1=A.M. |last1=Volk |first2=P.A. |last2=Stoll |first3=P. |last3=Metrovich |title=Recollections of Early Chip Development at Intel |journal=Intel Technology Journal |volume=5 |issue=Q1 |pages= |date=2001 |url=https://www.intel.com/content/dam/www/public/us/en/documents/research/2001-vol05-iss-1-intel-technology-journal.pdf}}</ref> it was soon being used for faster and/or less power hungry versions of the 8085, 8086, and other chips.
Line 46 ⟶ 47:
The original HMOS process, later referred to as HMOS I, had a channel length of 3 microns, which was reduced to 2 for the HMOS II, and 1.5 for HMOS III. By the time HMOS III was introduced in 1982, Intel had begun a switch to their [[CHMOS]] process, a [[CMOS]] process using design elements of the HMOS lines. One final version of the system was released, HMOS-IV. A significant advantage to the HMOS line was that each generation was deliberately designed to allow existing layouts to die-shrink with no major changes. Various techniques were introduced to ensure the systems worked as the layout changed.<ref>{{cite conference |conference=ISSCC 82 |date=1982 |title=HMOS III Technology}}</ref><ref>{{cite journal |first1=G.E. |last1=Atwood |first2=H. |last2=Dun |first3=J. |last3=Langston |first4=E. |last4=Hazani |first5=E.Y. |last5=So |first6=S. |last6=Sachdev |first7=K. |last7=Fuchs |title=HMOS III technology |journal=IEEE Journal of Solid-State Circuits |volume=17 |issue=5 |pages=810–5 |date=October 1982 |doi=10.1109/JSSC.1982.1051823 |bibcode=1982IJSSC..17..810A |s2cid=1215664 |url=}}</ref>
HMOS, HMOS II, HMOS III, and HMOS IV were together used for many different kinds of processors; the [[Intel 8085|8085]], [[Intel MCS-48|8048]], [[Intel 8051|8051]], [[Intel 8086|8086]], [[Intel
===Further development===
In the mid-1980s, faster CMOS variants, using similar HMOS process technology, such as Intel's CHMOS I, II, III, IV, etc. started to supplant n-channel HMOS for applications such as the [[i386|Intel 80386]] and certain [[microcontroller]]s. A few years later, in the late 1980s, [[BiCMOS]] was introduced for high-performance microprocessors as well as for high speed [[analogue electronics|analog
==Compared to CMOS==
|