Content deleted Content added
Citation bot (talk | contribs) Alter: title, issue. Add: authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by SemperIocundus | #UCB_webform |
MisterWeazel (talk | contribs) →Variants: added a factor 7 that was missing |
||
(33 intermediate revisions by 15 users not shown) | |||
Line 1:
{{Short description|Strongly NP-complete problem in computer science}}
The '''3-partition problem''' is a [[Strong NP-completeness|strongly NP-complete]] problem in [[computer science]]. The problem is to decide whether a given [[multiset]] of integers can be partitioned into triplets that all have the same sum. More precisely:
*
*
* Output: whether or not there exists a partition of ''S'' such that, for all triplets, the sum of the elements in each triplet equals ''T''.
The 3-partition problem remains strongly NP-complete under the restriction that every integer in ''S'' is strictly between ''T''/4 and ''T''/2.
Line 8 ⟶ 10:
==Example==
# The set
# # (every integer in ''S'' is strictly between ''T''/4 and ''T''/2): <math>S = \{4,5,5,5,5,6\}</math>, thus ''m''=2, and ''T''=15. There is feasible 3-partition <math>\{4,5,6\}, \{5,5,5\}</math>.
# (every integer in ''S'' is strictly between ''T''/4 and ''T''/2): <math>S = \{4,4,4,6,6,6\}</math>, thus ''m''=2, and ''T''=15. There is no feasible solution.
==Strong NP-completeness==
Line 19 ⟶ 24:
==Variants==
In the '''unrestricted-input variant''', the inputs can be arbitrary integers; in the '''restricted-input variant''', the inputs must be in (''T''/4
In the '''distinct-input variant''', the inputs must be in (''T''/4
In the '''unrestricted-output variant''', the ''m'' output subsets can be of arbitrary size - not necessarily 3 (but they still need to have the same sum ''T''). The restricted-output variant can be reduced to the unrestricted-variant: given an instance ''S<sub>
The '''ABC-partition problem''' (also called '''[[Numerical 3-dimensional matching|numerical 3-d matching]])''' is a variant in which, instead of a set ''S'' with 3{{hsp|''m''}} integers, there are three sets ''A'', ''B'', ''C'' with ''m'' integers in each. The sum of numbers in all sets is {{tmath|m T}}. The goal is to construct ''m'' triplets, each of which contains one element from A, one from B and one from C, such that the sum of each triplet is ''T''.<ref>{{Cite web|last=Demaine|first=Erik|date=2015|title=MIT OpenCourseWare - Hardness made Easy 2 - 3-Partition I|url=https://www.youtube.com/watch?v=ZaSMm2xvatw |archive-url=https://ghostarchive.org/varchive/youtube/20211214/ZaSMm2xvatw |archive-date=2021-12-14 |url-status=live|website=Youtube}}{{cbignore}}</ref>
The '''4-partition problem''' is a variant in which ''S'' contains ''n'' = 4 ''m'' integers, the sum of all integers is ''m T'', and the goal is to partition it into ''m'' quadruples, all with a sum of ''T''. It can be assumed that each integer is strictly between ''T''/5 and ''T''/3. ▼
▲The '''4-partition problem''' is a variant in which ''S'' contains ''n'' = 4
== Proofs ==
Garey and Johnson (1975) originally proved 3-Partition to be NP-complete, by a reduction from [[3-dimensional matching]].<ref>{{cite journal|author=[[Michael Garey|Garey, Michael R.]] and [[David S. Johnson]]|year=1975|title=Complexity
=== Reduction from 3d-matching to ABCD-partition ===
We are given an instance of E of 3d-matching, containing some ''m'' triplets {w<sub>i</sub>,x<sub>j</sub>,y<sub>k</sub>}, where the vertices are w<sub>1</sub>,...,w<sub>q</sub> and x<sub>1</sub>,...,x<sub>q</sub> and y<sub>1</sub>,...,y<sub>q</sub>. We construct an instance of ABCD-partition with 4*''m'' elements, as follows (where r := 32q):
* For each triplet t = {w<sub>i</sub>,x<sub>j</sub>,y<sub>k</sub>} in E, the set A contains an element u<sub>t</sub> = 10r<sup>4</sup>-kr<sup>3</sup>-jr<sup>2</sup>-ir.
* For each triplet t = {w<sub>i</sub>,x<sub>j</sub>,y<sub>k</sub>} in E, the set B contains w<sub>it</sub>, C contains x<sub>jt</sub>, and D contains y<sub>kt</sub>. So for each of w<sub>i</sub>, x<sub>j</sub>, y<sub>k</sub>, there may be many corresponding elements in B, C, D - one for each triplet in which they appear. We consider one of these elements (denoted by "1") as the "real" one, and the others as "dummy" ones. The element sizes are as follows:
** w<sub>i</sub>[1] = 10r<sup>4</sup>+ir; w<sub>i</sub>[2..] = 11r<sup>4</sup>+ir.
** x<sub>j</sub>[1] = 10r<sup>4</sup>+jr<sup>2</sup>; x<sub>j</sub>[2..] = 11r<sup>4</sup>+jr<sup>2</sup>.
** y<sub>k</sub>[1] = 10r<sup>4</sup>+kr<sup>3</sup>; y<sub>k</sub>[2..] = 8r<sup>4</sup>+kr<sup>3</sup>.
* The sum of every three "real" elements or every three "dummy" elements is 30r<sup>4</sup>+ir+jr<sup>2</sup>+kr<sup>3</sup>; and if the triplet element is added, the sum is 40r<sup>4</sup>.
* The threshold for the ABCD-partition instance is T=40r<sup>4</sup>. Note that the size of each element is in (T/3,T/5).
Given a perfect matching in ''E'', we construct a 4-partition of ABCD as follows:
* For each triplet ''t='' {''w<sub>i</sub>,x<sub>j</sub>,y<sub>k</sub>''} in the matching, we construct a 4-set {u<sub>t</sub>, w<sub>i</sub>[1], x<sub>j</sub>[1], y<sub>k</sub>[1]}.
* For each triplet not in the matching, we construct a similar 4-set, but with the corresponding dummy elements.
In both cases, the sum of the 4-set is 40r<sup>4</sup> as needed.
Given a partition of ABCD, the sum of each 4-set is 40r<sup>4</sup>. Therefore, the terms with r, r<sup>2</sup> and r<sup>3</sup> must cancel out, and the terms with r<sup>4</sup> must sum up to 40r<sup>4</sup>; so the 4-set must contain a triplet and 3 matching "real" elements, or a triplet and 3 matching "dummy" elements. From the triplets with the 3 matching "real" elements, we construct a valid perfect matching in E.
Note that, in the above reduction, the size of each element is polynomial in the input size; hence, this reduction shows that ABCD-partition is ''strongly'' NP-hard.
=== Reduction from ABCD-partition to 4-partition ===
Given an instance of ABCD-partition with ''m'' elements per set, threshold ''T'', and sum ''mT'', we construct an instance of 4-partition with 4''m'' elements:
* For each element a in A, the corresponding element has size 16a+1;
* For each element b in B, the corresponding element has size 16b+2;
* For each element c in C, the corresponding element has size 16c+4;
* For each element d in D, the corresponding element has size 16d+8.
All in all, the sum is 16mT+15m, and the new threshold is 16T+15.
Every ABCD-partition corresponds naturally to a 4-partition. Conversely, in every 4-partition, the sum modulo 16 is 15, and therefore it must contain exactly one item with size modulo 16 = 1, 2, 4, 8; this corresponds to exactly one item from A, B, C, D, from which we can construct an ABCD-partition.
Using a similar reduction, ABC-partition can be reduced to 3-partition.
=== Reduction from 4-partition to 3-partition ===
We are given an instance ''A'' of 4-partition: 4''m'' integers, a<sub>1</sub>,...,a<sub>4m</sub>, each of which in the range (T/3,T/5), summing up to ''mT''. We construct an instance ''B'' of 3-partition as follows:
* For each ''a<sub>i</sub>'' in A, B contains a "regular" element ''w<sub>i</sub>'' = 4*(5T+a<sub>i</sub>)+1. All in all there are 4''m'' regular elements, summing up to 81mT + 4m.
* For each pair of elements a<sub>i</sub>,a<sub>j</sub> in A, B contains two "pairing" elements: u<sub>ij</sub> = 4*(6T - a<sub>i</sub> - a<sub>j</sub>)+2 and u<sub>ij</sub>' = 4*(5T + a<sub>i</sub> + a<sub>j</sub>)+2. All in all there are 4''m*''(4''m''-1) pairing elements, summing up to (88mT+16m)*(4''m''-1).
* Additionally, B contains 8m<sup>2</sup>-3m "filler" elements, with size 20T, and total sum (8m<sup>2</sup>-3m)*20T.
* All in all, B contains 24m<sup>2</sup>-3m = 3(8m<sup>2</sup>-m) elements, with sum (64T+4)*(8m<sup>2</sup>-m).
* The threshold for the 3-partition instance is 64T+4; note that the sizes of all elements in B are in (16T+1,32T+2).
Given a 4-partition of ''A'', we construct a 3-partition for B as follows:
* For each 4-set {a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>,a<sub>4</sub>} with sum T, we construct a 3-set {w<sub>1</sub>,w<sub>2</sub>,u<sub>12</sub>} with sum 4*(5T+a<sub>1</sub>+5T+a<sub>2</sub>+6T-a<sub>1</sub>-a<sub>2</sub>)+1+1+2=64T+4 and another 3-set {w<sub>3</sub>,w<sub>4</sub>,u<sub>12</sub>'} with sum 4*(5T+a<sub>3</sub>+5T+a<sub>4</sub>+5T+a<sub>1</sub>+a<sub>2</sub>)+1+1+2=64T+4. These sets contain all 4m regular elements and 2m matching pairs of pairing elements.
* From the remaining elements, we construct 3-sets {u<sub>ij</sub>,u<sub>ij</sub>',filler} with sum 4*(6T-a<sub>i</sub>-a<sub>j</sub>+5T+a<sub>i</sub>+a<sub>j</sub>+5T)+2+2=64T+4.
Conversely, given a 3-partition of B, the sum of each 3-set is a multiple of 4, so it must contain either two regular items and one pairing item, or two pairing items and one filler item:
* If a 3-set contains two pairing items u<sub>ij</sub>, u<sub>kl</sub> and one filler item, then the sum of the two pairing items must be 44T+4 = 4*(5T+6T)+2+2, so they must have matching sizes (a<sub>i</sub>+a<sub>j</sub>=a<sub>k</sub>+a<sub>l</sub>). Therefore, by replacing as needed, we can assume that the two pairing items are in fact u<sub>ij</sub> and u<sub>ij</sub>'. Therefore, the remaining pairing items also consist of ''n'' matching pairs.
* Therefore, the remaining 3-sets can be partitioned into two groups: ''n'' 3-sets containing the items u<sub>ij</sub>, and ''n'' 3-sets containing the items u<sub>ij</sub>'. In each matching pair of 3-sets, the sum of the two pairing items u<sub>ij</sub>+u<sub>ij</sub>' is 44T+4, so the sum of the four regular items is 84T+4. Therefore, from the four regular items, we construct a 4-set in A, with sum T.
== Applications ==
The NP-hardness of 3-partition was used to prove the NP-hardness [[rectangle packing]], as well as of [[Tetris#Computational complexity|Tetris]]<ref>{{Cite journal|date=2002-10-28|title=Tetris is hard, even to approximate|url=http://dx.doi.org/10.1038/news021021-9|journal=Nature|doi=10.1038/news021021-9|issn=0028-0836|url-access=subscription}}</ref><ref>{{Cite journal|last1=BREUKELAAR|first1=RON|last2=DEMAINE|first2=ERIK D.|last3=HOHENBERGER|first3=SUSAN|last4=HOOGEBOOM|first4=HENDRIK JAN|last5=KOSTERS|first5=WALTER A.|last6=LIBEN-NOWELL|first6=DAVID|title=Tetris is Hard, Even to Approximate|date=2004-04-01|url=http://dx.doi.org/10.1142/s0218195904001354|journal=International Journal of Computational Geometry & Applications|volume=14|issue=1n02|pages=41–68|doi=10.1142/s0218195904001354|issn=0218-1959|arxiv=cs/0210020|s2cid=1177 }}</ref> and some other puzzles,<ref>{{Cite journal|last1=Demaine|first1=Erik D.|last2=Demaine|first2=Martin L.|date=2007-06-01|title=Jigsaw Puzzles, Edge Matching, and Polyomino Packing: Connections and Complexity|url=http://dx.doi.org/10.1007/s00373-007-0713-4|journal=Graphs and Combinatorics|volume=23|issue=S1|pages=195–208|doi=10.1007/s00373-007-0713-4|s2cid=17190810 |issn=0911-0119|url-access=subscription}}</ref> and some [[Job scheduling|job scheduling problems]].<ref>{{Cite journal|last1=Bernstein|first1=D.|last2=Rodeh|first2=M.|last3=Gertner|first3=I.|date=1989|title=On the complexity of scheduling problems for parallel/pipelined machines|url=http://dx.doi.org/10.1109/12.29469|journal=IEEE Transactions on Computers|volume=38|issue=9|pages=1308–1313|doi=10.1109/12.29469|issn=0018-9340|url-access=subscription}}</ref>
==References==
|