Behavior tree: Difference between revisions

Content deleted Content added
mNo edit summary
Tags: Visual edit Mobile edit Mobile web edit
 
(8 intermediate revisions by 7 users not shown)
Line 1:
{{Short description|Structured visual modeling technique}}
{{about|behavior trees for requirement handling|another use|Behavior tree (artificial intelligence, robotics and control)}}
{{Use dmy dates|date=May 2025}}{{Use American English|date=May 2025}}
Line 5 ⟶ 6:
[[File:Static Integrated View.jpg|thumb|320px|Building a system out of its requirements – static view]]
 
A '''behavior tree''' is a structured visual [[modeling]] technique used in [[systems engineering]] and [[software engineering]] to represent system behavior. It utilizes a hierarchical tree diagram composed of [[node (computer science)|nodes]] and connectors to illustrate control flow and system actions. By replacing ambiguous [[natural language]] descriptions with standardized visual elements—such as boxes, arrows, and standard symbols—behavior trees improve clarity, reduce misinterpretation, and enhance understanding of complex systems.<ref>{{Cite book |last=Lindsay |first=Peter A. |chapter=Behavior Trees: From Systems Engineering to Software Engineering |date=2010-09-01 |title=2010 8th IEEE International Conference on Software Engineering and Formal Methods |chapter-url=https://doi.org/10.1109/sefm.2010.11 |publisher=IEEE |pages=21–30 |doi=10.1109/sefm.2010.11|isbn=978-1-4244-8289-4 |chapter-url-access=subscription }}</ref>
 
== Overview ==
Line 24 ⟶ 25:
=== Behavior engineering process ===
Critical aspects of behavior engineering representation and process are listed below.
 
;<nowiki>'''Representation:</nowiki>'''
* The composition tree's role in the overall process is to provide a means to overcome the imperfect knowledge associated with the large set of requirements for a system.
;<nowiki>'''Process:</nowiki>'''
 
* Behavior engineering uses behavior trees to control complexity while growing a shared understanding of a complex system.
 
* A shared holistic understanding of a complex system integrates requirements to show its implied [[emergent behavior]].
 
== History ==
Behavior trees and the concepts for their application in [[systems engineering|systems]] and [[software engineering]] were originally developed by Geoff Dromey,.<ref name="dromey06FormalizingTrans">R.G.Dromey, [http://www.behaviorengineering.org/publications/dromey/Dromey-Chapter-Final-20051.pdf "Formalizing the Transition from Requirements to Design"] {{Webarchive|url=https://web.archive.org/web/20110725053952/http://www.behaviorengineering.org/publications/dromey/Dromey-Chapter-Final-20051.pdf |date=25 July 2011 }}, in "Mathematical Frameworks for Component Software – Models for Analysis and Synthesis", Jifeng He, and Zhiming Liu (Eds.), World Scientific Series on Component-Based Development, pp. 156–187, (Invited Chapter) (2006)</ref><ref name="dromey03K1-Dromey">R.G.Dromey, [http://www.behaviorengineering.org/publications/dromey/K1-Dromey.pdf From Requirements to Design: Formalizing the Key Steps] {{Webarchive|url=https://web.archive.org/web/20110725054005/http://www.behaviorengineering.org/publications/dromey/K1-Dromey.pdf |date=25 July 2011 }}, (Invited Keynote Address), SEFM-2003, IEEE International Conference on Software Engineering and Formal Methods, Brisbane, Sept. 2003, pp. 2–11.</ref><ref>R.L.Glass, [http://www.behaviorengineering.org/publications/Bob-Glass-GSE-CACM.pdf "Is This a Revolutionary Idea or Not"] {{Webarchive|url=https://web.archive.org/web/20110725054100/http://www.behaviorengineering.org/publications/Bob-Glass-GSE-CACM.pdf |date=25 July 2011 }}, Communications of the ACM, Vol. 47(11), pp. 23–25, Nov. 2004.</ref><ref>R.G.Dromey, [http://www.behaviorengineering.org/publications/dromey/Dromey.pdf "Climbing Over the ‘No Silver Bullet’ Brick Wall"] {{Webarchive|url=https://web.archive.org/web/20110725054117/http://www.behaviorengineering.org/publications/dromey/Dromey.pdf |date=25 July 2011 }}, IEEE Software, Vol. 23, No. 2, pp. 118–120, (March 2006)</ref> with theThe first publication of some of the key ideas were in 2001.<ref>R.G.Dromey, Genetic Software Engineering – Simplifying Design Using Requirements Integration, IEEE Working Conference on Complex and Dynamic Systems Architecture, Brisbane, Dec 2001.</ref> Early publications on this work used the terms "genetic software engineering" and "genetic design" to describe the application of behavior trees. The reason for originally using the word "genetic" was because sets of genes, sets of jigsaw puzzle pieces, and sets of requirements, when represented as behavior trees, all appear to share several key properties:
 
* They contained enough information as a set to allow them to be composed – with behavior trees, this allows a system to be built out of its requirements.
Line 90 ⟶ 94:
In general, many defects become much more visible when there is an integrated view of the requirements<ref name = "dromey07EngLgeScale"/> and each requirement has been placed in the behavior context where it needs to execute. For example, it is much easier to tell whether a set of conditions or events emanating from a node is complete and consistent. The traceability tags<ref name = "BTNotation" /> also make it easy to refer back to the original natural-language requirements. There is also the potential to automate a number of defect and consistency checks on an integrated behavior tree.<ref name = "buildEnv04">Smith, C., Winter, K., Hayes, I., Dromey, R.G., Lindsay, P., Carrington, D.: [https://ieeexplore.ieee.org/document/1342775 An Environment for Building a System Out of Its Requirements], 19th IEEE International Conference on Automated Software Engineering, Linz, Austria, Sept. (2004).</ref>
 
When all defects have been corrected and the IBT is logically consistent and complete, it becomes a model behavior tree (MBT), which serves as a [[formal specification]] for the system's behavior that has been constructed out of the original requirements. This is the clearly defined stopping point for the analysis phase. With other [[Modeling languages|modeling notations]] and methods (i.e. [[Unified Modeling Language|UML]]), it is less clear-cut when modelingmodelling can stop.<ref name = "shuttle04" /> In some cases, parts of a model behavior tree may need to be transformed to make the specification [[executable]]. Once an MBT has been made executable, it is possible to carry out a number of other dependability checks.
 
==== Simulation ====
Line 121 ⟶ 125:
Several BREs can be linked together to form complex systems using a system-of-systems construct and the Behavior Engineering Component Integration Environment (BECIE). BECIE is also used to monitor and control the behavior tree models being executed within a BRE, similar to [[SCADA|supervisory control and data acquisition (SCADA)]] systems used in industrial process control.
 
Executable behavior trees have been developed for case studies<ref name="shuttle04">Dromey, R.G. [http://www.behaviorengineering.org/publications/dromey/Dromey-SCESM-2004N.pdf Using Behavior Trees to Model the Autonomous Shuttle System] {{Webarchive|url=https://web.archive.org/web/20110725054354/http://www.behaviorengineering.org/publications/dromey/Dromey-SCESM-2004N.pdf |date=25 July 2011 }}, 3rd International Workshop on Scenarios and State Machines: Models, Algorithms, and Tools (SCESM04) ICSE Workshop W5S, Edinburgh, 25 May 2004</ref> including automated train protection, <ref name = "integratingSoftHard08" /> mobile robots with a dynamic object following, an ambulatory infusion pump,<ref name = "integratingSafety05" />, and traffic light management systems. A version of the BRE suited for embedded systems (eBRE) is also available, with reduced functionality tailored for small-footprint microcontrollers.
 
== Applications ==
Line 147 ⟶ 151:
 
=== Model-Based Testing ===
[[Model-based testing]] is an approach to software testing that requires testers to create test models from requirements of Software Under Test (SUT). Traditionally, modeling languages such as UML state chartsstatecharts, [[Finite-state machine|finite-state machines]] (FSMs), EFSM ([[Extendedextended finite-state machine|Extendedmachines Finite-State Machines]](EFSMs){{expand acronym|ab|date=April 2025}}, and flowflowcharts chartshave arebeen used as the modeling language. Recently, an interesting approach in which Event-Driven Swim Lane Petri Net (EDSLPN) is used as the modeling language also appeared. Behavior tree notation should be considered as a good modeling notation to MBT also, and it has a few advantages among other notations:
# It has the same expressiveness level as UML state charts and EDSLPN.
# It is intuitive to use as a modeling notation due to its graphical nature.
# Each behavior tree node has a requirement tag; these greatly facilitate the creation of a traceability matrix from requirement to test artifact.<ref>{{CitationCite web needed|datetitle=MayA Model Based Testing tool - MBTester · 测试之家 |url=https://testerhome.com/topics/18850 |access-date=2025-06-12 |website=testerhome.com}}</ref>
 
== Scalability and industry applications ==
[[File:Behavior Engineering Support Environment.png|thumb|225px|Screen-shotScreenshot of behavior engineering support environment tool]]
[[File:Integrated Behavior Tree Larger System.png|thumb|225px|Integrated behavior tree – larger system (more than 1000 requirements)]]
The first industry trials to test the feasibility of the method and refine its capability were conducted in 2002. Over the last three years, a number of systematic industry trials on large-scale defense, transportation, and enterprise systems have been conducted.<ref name = "raytheonSysResearch" /><ref name="industryTrialsPaper">Powell, D. 2007. [http://www.behaviorengineering.org/docs/ASWEC07_Industry_Powell.pdf Requirements Evaluation Using Behavior Trees – Findings from Industry] {{Webarchive|url=https://web.archive.org/web/20110725061927/http://www.behaviorengineering.org/docs/ASWEC07_Industry_Powell.pdf |date=25 July 2011 }}</ref> This work has established that the method scales to systems with large numbers of requirements but also that it is important to use tool support<ref name = "Integrare07" /><ref name = "RaytheonAswec08" /> in order to efficiently navigate and edit the resultant large integrated views of graphical data. On average, over a number of projects, 130 confirmed major defects per 1000 requirements have consistently been found after normal reviews and corrections have been made.<ref name = "industryTrialsPaper" /> With less mature requirements sets, much higher defect rates have been observed.
Line 161 ⟶ 165:
An important part of this work with industry has involved applying the analysis part of the method to six large-scale defense projects for [[Raytheon]] Australia. They see the method as "a key risk mitigation strategy, of use in both solution development and as a means of advising the customer on problems with acquisition documentation".<ref name = "boston08" /><ref>McNicholas, D., (Raytheon Australia), 2007. [http://www.behaviorengineering.org/images/publications/dromey2/be-industry-benefits.doc Behavior Engineering Industry Benefits]{{Dead link|date=November 2018 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> An outcome of these industry trials has been the joint development<ref name="raytheonAustJoint">Raytheon Australia, 2008. [http://www.raytheon.com.au/Files/Behavior%20Trees.pdf Understanding grows on Behavior Trees] {{Webarchive|url=https://web.archive.org/web/20090915050633/http://www.raytheon.com.au/Files/Behavior%20Trees.pdf |date=15 September 2009 }}</ref> with Raytheon Australia of an industry-strength tool to support the analysis, editing, and display of large integrated sets of requirements.<ref name="RaytheonAswec08">Phillips, V., (Raytheon Australia), [http://www.behaviorengineering.org/images/publications/dromey2/bese_master_v2.ppt "Implementing a Behavior Tree Analysis Tool Using Eclipse Development Frameworks"]{{Dead link|date=November 2018 |bot=InternetArchiveBot |fix-attempted=yes }}, Australian Software Engineering Conference (ASWEC’08), Perth, March 2008</ref> More extensive details of industry findings can be found on the Behavior Engineering website.<ref name = "BEWebsite">Behavior Engineering. [http://www.behaviorengineering.org/ Behavior Engineering website] {{Webarchive|url=https://web.archive.org/web/20090301170621/http://www.behaviorengineering.org/ |date=1 March 2009 }}</ref>
 
Dr. Terry Stevenson (chief technical officer, Raytheon Australia), Mr. Jim Boston (senior project manager, Raytheon Australia), Mr. Adrian Pitman from the [[Defence Materiel Organisation|Australian Defense Materiel Organization]], Dr. Kelvin Ross (CEO, K.J. Ross & Associates), and Christine Cornish (Bushell & Cornish) have provided the special opportunities needed to support this research and to conduct the industry trials<ref name = "raytheonSysResearch" /><ref name = "industryTrialsPaper" /> and live project work. This work has been supported by the [[Australian Research Council]] – [[ARC Centre for Complex Systems]] and funds received from industry.{{citation<ref>For needed|date=Aprilfurther 2015}}details see:
 
<ref>For further details see:
*[http://www.raytheon.com.au/Files/Behavior%20Trees.pdf Raytheon Australia – Behavior Trees Joint Development] {{Webarchive|url=https://web.archive.org/web/20090915050633/http://www.raytheon.com.au/Files/Behavior%20Trees.pdf |date=15 September 2009 }}
*[http://www.behaviorengineering.org/images/publications/dromey2/bese_master_v2.ppt "Implementing a Behavior Tree Analysis Tool Using Eclipse Development Frameworks"]{{Dead link|date=November 2018 |bot=InternetArchiveBot |fix-attempted=yes }} Vincent Phillips, Raytheon Australia.
Line 179 ⟶ 181:
* They can be understood by [[Stakeholder (corporate)|stakeholders]] without the need for [[formal methods]] training. By strictly retaining the vocabulary of the original requirements, this eases the burden of understanding.
* They have a [[Semantics of programming languages|formal semantics]],<ref name = "colvinHayesNotation" /> they support [[Concurrency (computer science)|concurrency]], they are [[executable]], and they can be [[simulated]], [[Model checking|model checked]], and used to undertake [[failure mode and effects analysis]].<ref name = "automatedFailEffect05" />
* They can be used equally well to model human processes, to analyze contracts,<ref name = "contracts02">Milosevic, Z., Dromey, R.G. [https://ieeexplore.ieee.org/document/1137692 On Expressing and Monitoring Behavior in Contracts], EDOC 2002, Proceedings, 6th International Enterprise Distributed Object Computing Conference, Lausanne, Switzerland, Sept. 2002, pp. 3-14.</ref> to represent forensic information, to represent biological systems, and many other applications. In each case, they deliver the same benefits in terms of managing complexity and seeing things as a whole. They can also be used for [[Safety-critical system|safety critical systems]],<ref name = "integratingSafety05" /> [[embedded system]]s,<ref name = "embeddedSys05" />, and [[real-time systems]].<ref name="realTimeCollab05">Lin, K., Chen, D., Sun, C., Dromey, R.G., [http://www.behaviorengineering.org/publications/kailin/CDVEO5_Kevin.pdf A Constraint Maintenance Strategy and Applications in real-time Collaborative Environments]{{Dead link|date=November 2018 |bot=InternetArchiveBot |fix-attempted=yes }}, 2nd International Conference on Cooperative Design, Visualization and Engineering (CDVE2005), 2005.</ref><ref name="dataflowContstraint06">Lin, K., Chen, D., Dromey, R.G., Sun, CZ.: [http://www.behaviorengineering.org/publications/kailin/IEEE06_Kevin.pdf Multi-way Dataflow Constraint Propagation in Real-time Collaborative Systems] {{Webarchive|url=https://web.archive.org/web/20110725061427/http://www.behaviorengineering.org/publications/kailin/IEEE06_Kevin.pdf |date=25 July 2011 }}, IEEE, The 2nd International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2006), Atlanta, Georgia, USA, Nov, 2006.</ref><ref name="timeBT07">Grunske, L., Winter, K., Colvin, R., [http://www.behaviorengineering.org/publications/grunske/ASWEC20072.pdf "Timed Behavior Trees and their application to verifying real-time systems"] {{Webarchive|url=https://web.archive.org/web/20081118165542/http://www.behaviorengineering.org/publications/grunske/ASWEC20072.pdf |date=18 November 2008 }}, Proceedings of 18th Australian Conference on Software Engineering (AEWEC 2007), April 2007, accepted for publication.</ref>
 
== Disadvantages ==
Line 203 ⟶ 205:
[[Category:Enterprise modelling]]
[[Category:Modeling languages]]
[[Category:Software engineering]]