Ab initio methods (nuclear physics): Difference between revisions

Content deleted Content added
Article created.
 
No edit summary
 
(23 intermediate revisions by 13 users not shown)
Line 1:
{{Nuclear physics}}
In [[nuclear physics]], '''ab initio methods''' seek to describe the [[atomic nucleus]] from the ground up by solving the [[Schrödinger equation]] in terms of the individual [[nucleon|nucleons]] and the [[nuclear force|interactions between them]]. This is a more fundamental approach compared to e.g. the [[nuclear shell model]]. Previously limited to very light nuclei, recent progress has enabled ab initio treatment of heavier nuclei such as [[isotopes of nickel|nickel]].<ref name=navratil2016>{{cite journal|first1=P.|last1=Navrátil|first2=S.|last2=Quaglioni|first3=G.|last3=Hupin|first4=C.|last4=Romero-Redondo|first5=A.|last5=Calci|title=Unified ab initio approaches to nuclear structure and reactions|journal=Physica Scripta|volume=91|issue=5|pages=053002|year=2016|url=http://stacks.iop.org/1402-4896/91/i=5/a=053002|doi=10.1088/0031-8949/91/5/053002}}</ref>
 
In [[nuclear physics]], '''ab initio methods''' seek to describe the [[atomic nucleus]] from the groundbottom up by solving the non-relativistic [[Schrödinger equation]] infor termsall of the individualconstituent [[nucleon|nucleons]]s and the [[nuclear force|interactionsforces between them]]. This is done either exactly for very light nuclei (up to four nucleons) or by employing certain well-controlled approximations for heavier nuclei. Ab initio methods constitute a more fundamental approach compared to e.g. the [[nuclear shell model]]. Previously limited to very light nuclei, recentRecent progress has enabled ab initio treatment of heavier nuclei such as [[isotopes of nickel|nickel]].<ref name=navratil2016>{{cite journal|first1=P.|last1=Navrátil|first2=S.|last2=Quaglioni|first3=G.|last3=Hupin|first4=C.|last4=Romero-Redondo|first5=A.|last5=Calci|title=Unified ab initio approaches to nuclear structure and reactions|journal=Physica Scripta|volume=91|issue=5|pages=053002|year=2016|url=http://stacks.iop.org/1402-4896/91/i=5/a=053002|doi=10.1088/0031-8949/91/5/053002|arxiv=1601.03765|bibcode=2016PhyS...91e3002N|s2cid=119280384}}</ref>
A significant challenge in the ab initio treatment stems from the complexities of the inter-nucleon interaction. The strong nuclear force is believed to emerge from the [[strong interaction]] described by [[quantum chromodynamics]] (QCD), but QCD is non-pertubative in the low-energy regime relevant to nuclear physics. This makes the direct use of QCD for the description of the inter-nucleon interactions very difficult, and a model must be used instead. The most sophisticated models available are based on [[chiral perturbation theory|chiral effective field theory]]. This [[effective field theory]] includes all interactions compatible with the symmetries of QCD, ordered by the size of their contributions. The degrees of freedom in this theory are nucleons and [[pion|pions]], as opposed to [[quark|quarks]] and [[gluon|gluons]] as in QCD. The effective theory contains parameters called low-energy constants, which can be determined from scattering data.<ref name=navratil2016 /><ref name=machleidt2011>
 
A significant challenge in the ab initio treatment stems from the complexities of the inter-nucleon interaction. The [[nuclear force|strong nuclear force]] is believed to emerge from the [[strong interaction]] described by [[quantum chromodynamics]] (QCD), but QCD is non-pertubativeperturbative in the low-energy regime relevant to nuclear physics. This makes the direct use of QCD for the description of the inter-nucleon interactions very difficult (see [[lattice QCD]]), and a model must be used instead. The most sophisticated models available are based on [[chiral perturbation theory|chiral effective field theory]]. This [[effective field theory]] (EFT) includes all interactions compatible with the symmetries of QCD, ordered by the size of their contributions. The degrees of freedom in this theory are nucleons and [[pion|pions]]s, as opposed to [[quark|quarks]]s and [[gluon|gluons]]s as in QCD. The effective theory contains parameters called low-energy constants, which can be determined from scattering data.<ref name=navratil2016 /><ref name=machleidt2011>
{{cite journal
|firstfirst1=R.
|lastlast1=Machleidt
|first2=D.R.
|last2=Entem
Line 14 ⟶ 16:
|pages=1–75
|doi=10.1016/j.physrep.2011.02.001
|arxiv=1105.2919v12919
|bibcode = 2011PhR...503....1M |s2cid=118434586
}}</ref>
 
Chiral EFT implies the existence of [[many-body force|many-body forces]]s, most notably the three-nucleon interaction which is known to be an essential ingredient in the nuclear many-body problem.<ref name=navratil2016 /><ref name=machleidt2011 />
 
After arriving at a [[Hamiltonian (quantum mechanics)|Hamiltonian]] <math>H</math> (based on chiral EFT or other models) one must solve the Schrödinger equation
Examples of ab initio methods in nuclear physics:
<math display="block">H\vert{\Psi}\rangle = E \vert{\Psi}\rangle ,</math>
where <math>\vert{\Psi}\rangle</math> is the many-body wavefunction of the [[mass number|''A'']] nucleons in the nucleus. Various ab initio methods have been devised to numerically find solutions to this equation:
 
* [[Green's function Monte Carlo]] (GFMC)<ref name=pieper2001>
{{cite journal
|firstfirst1=S. C.
|lastlast1=Pieper
|first2=R. B.
|last2=Wiringa
|year=2001
|title=Quantum Monte Carlo calculations of light nuclei
|journal=[[Annual Review of Nuclear and Particle Science]]
|volume=51
|pages=53-9053–90
|doi=10.1146/annurev.nucl.51.101701.132506|doi-access=free
|arxiv=nucl-th/0103005
}}</ref>
|bibcode=2001ARNPS..51...53P
|s2cid=18124819
}}</ref>
* No-core shell model (NCSM)<ref name=barrett2013>
{{cite journal
|firstfirst1=B.R.
|lastlast1=Barrett
|first2=P.
|last2=Navrátil
Line 48 ⟶ 56:
|pages=131–181
|doi=10.1016/j.ppnp.2012.10.003
|bibcode=2013PrPNP..69..131B
}}</ref>
|url=https://digital.library.unt.edu/ark:/67531/metadc1415883/
* [[Coupled cluster#Use in nuclear physics|Coupled cluster]] (CC)<ref>{{cite journal | doi = 10.1088/0034-4885/77/9/096302 | title = Coupled-cluster computations of atomic nuclei | year = 2014 | last1 = Hagen | first1 = G. | last2 = Papenbrock | first2 = T. | last3 = Hjorth-Jensen | first3 = M. | last4 = Dean | first4 = D. J. | journal = Reports on Progress in Physics | volume = 77 | pages = 096302 | issue = 9 }}</ref>
}}</ref>
* [[Coupled cluster#Use in nuclear physics|Coupled cluster]] (CC)<ref>{{cite journal | doi = 10.1088/0034-4885/77/9/096302 | pmid = 25222372 | title = Coupled-cluster computations of atomic nuclei | year = 2014 | last1 = Hagen | first1 = G. | last2 = Papenbrock | first2 = T. | last3 = Hjorth-Jensen | first3 = M. | last4 = Dean | first4 = D. J. | journal = Reports on Progress in Physics | volume = 77 | pages = 096302 | issue = 9 | arxiv = 1312.7872 | bibcode = 2014RPPh...77i6302H | s2cid = 10626343 }}</ref>
* Self-consistent Green's function (SCGF)<ref name=cipollone2013>
{{cite journal
|firstfirst1=A.
|lastlast1=Cipollone
|first2=C.
|last2=Barbieri
Line 60 ⟶ 70:
|year=2013
|title=Isotopic Chains Around Oxygen from Evolved Chiral Two- and Three-Nucleon Interactions
|journal=Phys.Physical Rev.Review Lett.Letters
|volume=111
|issue=6
|pages=062501
|doi=10.1103/PhysRevLett.111.062501
|pmid=23971568
}}</ref>
|arxiv=1303.4900
|bibcode=2013PhRvL.111f2501C
|s2cid=2198329
}}</ref>
* In-medium similarity renormalization group (IM-SRG)<ref name=hergert2013>
{{cite journal
|firstfirst1=H.
|lastlast1=Hergert
|first2=S.
|last2=Binder
Line 80 ⟶ 94:
|year=2013
|title=Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two-Plus-Three-Nucleon Interactions
|journal=Phys.Physical Rev.Review Lett.Letters
|volume=110
|issue=24
|pages=242501
|doi=10.1103/PhysRevLett.110.242501
|pmid=25165916
}}</ref>
|arxiv=1302.7294
|bibcode=2013PhRvL.110x2501H
|s2cid=5501714
}}</ref>
 
==Further reading==
*{{cite magazine journal|last=Dean |first=D. |year=2007 |title=Beyond the nuclear shell model |doi=10.1063/1.2812123 |magazinejournal=Physics Today |volume=60 |issue=11 |page=48|bibcode=2007PhT....60k..48D |url=https://zenodo.org/record/1232029 }}
*{{cite journal |last=Zastrow |first=M. |year=2017 |title=In search for "magic" nuclei, theory catches up to experiments |doi=10.1073/pnas.1703620114 |pmid=28512181 |pmc=5441833 |journal=Proc Natl Acad Sci U S A |volume=114 |issue=20 |pages=5060–5062|bibcode=2017PNAS..114.5060Z |doi-access=free }}
 
== References ==
{{Reflist}}
 
[[Category:Nuclear physics]]