Content deleted Content added
Will Orrick (talk | contribs) Incorporate notion of primitive lambda-root into the introduction and numerical examples. Give more accurate title to subsection "Minimality". Slightly elaborate proof in subsection "Divisibility". Small wording changes and typo corrections, |
Owen Reich (talk | contribs) Link suggestions feature: 3 links added. |
||
(13 intermediate revisions by 10 users not shown) | |||
Line 1:
{{Short description|Function in mathematical number theory}}
In [[
:<math>a^m \equiv 1 \pmod{n}</math>
holds for every integer {{mvar | a}} [[coprime]] to {{mvar | n}}. In algebraic terms, {{math | ''λ''(''n'')}} is the [[exponent of a group|exponent]] of the [[multiplicative group of integers modulo n|multiplicative group of integers modulo {{mvar | n}}]]. As this is a [[Abelian group#Finite abelian groups|finite abelian group]], there must exist an element whose [[Cyclic group#Definition and notation|order]] equals the exponent, {{math | ''λ''(''n'')}}. Such an element is called a '''primitive {{math | ''λ''}}-root modulo {{mvar | n}}'''.
[[File:carmichaelLambda.svg|thumb|upright=2|Carmichael {{mvar | λ}} function: {{math | ''λ''(''n'')}} for {{math | 1 ≤ ''n'' ≤ 1000}} (compared to Euler {{mvar | φ}} function)|none]]
The Carmichael function is named after the American mathematician [[Robert Daniel Carmichael|Robert Carmichael]] who defined it in 1910.<ref>
Line 9 ⟶ 10:
</ref> It is also known as '''Carmichael's λ function''', the '''reduced totient function''', and the '''least universal exponent function'''.
The order of the multiplicative group of integers modulo {{mvar | n}} is {{math | ''φ''(''n'')}}, where {{mvar | φ}} is [[Euler's totient function]]. Since the order of an element of a finite group divides the order of the group, {{math | ''λ''(''n'')}} divides {{math | ''φ''(''n'')}}. The following table compares the first 36 values of {{math | ''λ''(''n'')}} {{OEIS|id=A002322}}
{| class="wikitable" style="text-align: center;"
Line 59 ⟶ 60:
==Numerical examples==
==
The Carmichael lambda function of a [[prime power]] can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case {{mvar | λ}} of the product is the [[least common multiple]] of the {{mvar | λ}} of the prime power factors. Specifically, {{math | ''λ''(''n'')}} is given by the recurrence
:<math>\lambda(n) = \begin{cases}
\varphi(n) & \text{if }n\text{ is 1, 2, 4, or an odd prime power,}\\
Line 73 ⟶ 74:
== Carmichael's theorems ==
{{anchor|Carmichael's theorem}}
Carmichael proved two theorems that, together, establish that if {{math | ''λ''(''n'')}} is considered as defined by the recurrence of the previous section, then it satisfies the property stated in the introduction, namely that it is the smallest positive integer {{mvar | m}} such that <math>a^m\equiv 1\pmod{n}</math> for all {{mvar | a}} relatively prime to {{mvar | n}}.
{{Math theorem |name=Theorem 1|math_statement=If {{mvar | a}} is relatively prime to {{mvar | n}} then <math>a^{\lambda(n)}\equiv 1\pmod{n}</math>.<ref>
This implies that the order of every element of the multiplicative group of integers modulo {{mvar | n}} divides {{math | ''λ''(''n'')}}. Carmichael calls an element {{mvar | a}} for which <math>a^{\lambda(n)}</math> is the least power of {{mvar | a}} congruent to 1 (mod {{mvar | n}}) a ''primitive λ-root modulo n''.<ref>Carmichael (1914) p.54</ref> (This is not to be confused with a [[primitive root modulo n|primitive root modulo {{mvar | n}}]], which Carmichael sometimes refers to as a primitive <math>\varphi</math>-root modulo {{mvar | n}}.)
{{Math theorem |name=Theorem 2|math_statement=For every positive integer {{mvar | n}} there exists a primitive {{mvar | λ}}-root modulo {{mvar | n}}. Moreover, if {{mvar | g}} is such a root, then there are <math>\varphi(\lambda(n))</math> primitive {{mvar | λ}}-roots that are congruent to powers of {{mvar | g}}.<ref>Carmichael (1914) p.55</ref>}}
If {{mvar | g}} is one of the primitive {{mvar | λ}}-roots guaranteed by the theorem, then <math>g^m\equiv1\pmod{n}</math> has no positive integer solutions {{mvar | m}} less than {{math | ''λ''(''n'')}}, showing that there is no positive {{math | ''m'' < ''λ''(''n'')}} such that <math>a^m\equiv 1\pmod{n}</math> for all {{mvar | a}} relatively prime to {{mvar | n}}.
The second statement of Theorem 2 does not imply that all primitive {{mvar | λ}}-roots modulo {{mvar | n}} are congruent to powers of a single root {{mvar | g}}.<ref>Carmichael (1914) p.56</ref> For example, if {{math | ''n'' {{=}} 15}}, then {{math | ''λ''(''n'') {{=}} 4}} while <math>\varphi(n)=8</math> and <math>\varphi(\lambda(n))=2</math>. There are four primitive {{mvar | λ}}-roots modulo 15, namely 2, 7, 8, and 13 as <math>1\equiv2^4\equiv8^4\equiv7^4\equiv13^4</math>. The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent
For a contrasting example, if {{math | ''n'' {{=}} 9}}, then <math>\lambda(n)=\varphi(n)=6</math> and <math>\varphi(\lambda(n))=2</math>. There are two primitive {{mvar | λ}}-roots modulo 9, namely 2 and 5, each of which is congruent to the fifth power of the other. They are also both primitive <math>\varphi</math>-roots modulo 9.
Line 136 ⟶ 138:
:<math>a \equiv a^{\lambda(n)+1} \pmod n.</math>
===Extension for powers of two===▼
For {{mvar | a}} coprime to (powers of) 2 we have {{math | ''a'' {{=}} 1 + 2''h''}} for some {{mvar | h}}. Then,▼
:<math>a^2 = 1+4h(h+1) = 1+8C</math>▼
a^{2^{k-1}}&=\left(1+2^k h\right)^2=1+2^{k+1}\left(h+2^{k-1}h^2\right)▼
:<math>a^{2^{k-2}}\equiv 1\pmod{2^k}.</math>▼
===Average value===
Line 259 ⟶ 242:
The Carmichael function is important in [[cryptography]] due to its use in the [[RSA (cryptosystem)|RSA encryption algorithm]].
==Proof of Theorem 1==
For {{math | ''n'' {{=}} ''p''}}, a prime, Theorem 1 is equivalent to [[Fermat's little theorem]]:
:<math>a^{p-1}\equiv1\pmod{p}\qquad\text{for all }a\text{ coprime to }p.</math>
For prime powers {{math | ''p''<sup>''r''</sup>}}, {{math | ''r'' > 1}}, if
holds for some integer {{mvar | h}}, then raising both sides to the power {{mvar | p}} gives
:<math>a^{p^r(p-1)}=1+h'p^{r+1}</math>
for some other integer <math>h'</math>. By induction it follows that <math>a^{\varphi(p^r)}\equiv1\pmod{p^r}</math> for all {{mvar | a}} relatively prime to {{mvar | p}} and hence to {{math | ''p''<sup>''r''</sup>}}. This establishes the theorem for {{math | ''n'' {{=}} 4}} or any odd prime power.
▲For {{mvar | a}} coprime to (powers of) 2 we have {{math | ''a'' {{=}} 1 + 2''h''<sub>2</sub>}} for some integer {{
:<math>a^2 = 1+4h_2(h_2+1) = 1+8\binom{h_2+1}{2}=:1+8h_3</math>,
where <math>h_3</math> is an integer. With {{math | 1=''r'' = 3}}, this is written
Squaring both sides gives
▲:<math>a^{2^{
where <math>h_{r+1}</math> is an integer. It follows by induction that
:<math>a^{2^{r-2}}=a^{\frac{1}{2}\varphi(2^r)}\equiv 1\pmod{2^r}</math>
for all <math>r\ge3</math> and all {{mvar | a}} coprime to <math>2^r</math>.<ref>Carmichael (1914) pp.38–39</ref>
===Integers with multiple prime factors===
By the [[unique factorization theorem]], any {{math | ''n'' > 1}} can be written in a unique way as
:<math> n= p_1^{r_1}p_2^{r_2} \cdots p_{k}^{r_k} </math>
where {{math | ''p''<sub>1</sub> < ''p''<sub>2</sub> < ... < ''p<sub>k</sub>''}} are primes and {{math | ''r''<sub>1</sub>, ''r''<sub>2</sub>, ..., ''r<sub>k</sub>''}} are positive integers. The results for prime powers establish that, for <math>1\le j\le k</math>,
:<math>a^{\lambda\left(p_j^{r_j}\right)}\equiv1 \pmod{p_j^{r_j}}\qquad\text{for all }a\text{ coprime to }n\text{ and hence to }p_i^{r_i}.</math>
From this it follows that
:<math>a^{\lambda(n)}\equiv1 \pmod{p_j^{r_j}}\qquad\text{for all }a\text{ coprime to }n,</math>
where, as given by the recurrence,
:<math>\lambda(n) = \operatorname{lcm}\Bigl(\lambda\left(p_1^{r_1}\right),\lambda\left(p_2^{r_2}\right),\ldots,\lambda\left(p_k^{r_k}\right)\Bigr).</math>
From the [[Chinese remainder theorem]] one concludes that
:<math>a^{\lambda(n)}\equiv1 \pmod{n}\qquad\text{for all }a\text{ coprime to }n.</math>
==See also==
|