Neuromorphic computing: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: date, pmid, pages, issue, url. Removed parameters. | Use this bot. Report bugs. | Suggested by Abductive | Category:Articles with specifically marked weasel-worded phrases from February 2025 | #UCB_Category 354/397
 
(9 intermediate revisions by 8 users not shown)
Line 2:
{{Use American English|date = January 2019}}
{{Use mdy dates|date = January 2019}}
{{Machine learning|Paradigms}}
 
'''Neuromorphic computing''' is an approach to computing that is inspired by the structure and function of the human brain.<ref>{{Cite journal |last1=Ham |first1=Donhee |last2=Park |first2=Hongkun |last3=Hwang |first3=Sungwoo |last4=Kim |first4=Kinam |title=Neuromorphic electronics based on copying and pasting the brain |url=https://www.nature.com/articles/s41928-021-00646-1 |journal=Nature Electronics |year=2021 |language=en |volume=4 |issue=9 |pages=635–644 |doi=10.1038/s41928-021-00646-1 |s2cid=240580331 |issn=2520-1131|url-access=subscription }}</ref><ref>{{Cite journal |last1=van de Burgt |first1=Yoeri |last2=Lubberman |first2=Ewout |last3=Fuller |first3=Elliot J. |last4=Keene |first4=Scott T. |last5=Faria |first5=Grégorio C. |last6=Agarwal |first6=Sapan |last7=Marinella |first7=Matthew J. |last8=Alec Talin |first8=A. |last9=Salleo |first9=Alberto |date=April 2017 |title=A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing |url=https://www.nature.com/articles/nmat4856 |journal=Nature Materials |language=en |volume=16 |issue=4 |pages=414–418 |doi=10.1038/nmat4856 |pmid=28218920 |bibcode=2017NatMa..16..414V |issn=1476-4660}}</ref> A neuromorphic computer/chip is any device that uses physical [[artificial neuron]]s to do computations.<ref>{{cite journal|last1=Mead|first1=Carver|title=Neuromorphic electronic systems|journal=Proceedings of the IEEE|date=1990|volume=78|issue=10|pages=1629–1636|doi=10.1109/5.58356|s2cid=1169506 |url=https://authors.library.caltech.edu/53090/1/00058356.pdf}}</ref><ref name=":2" /> In recent times, the term ''neuromorphic'' has been used to describe [[Analogue electronics|analog]], [[Digital electronics|digital]], [[Mixed-signal integrated circuit|mixed-mode analog/digital VLSI]], and software systems that implement models of [[neural system]]s (for [[perception]], [[motor control]], or [[multisensory integration]]). Recent advances have even discovered ways to mimicdetect thesound humanat nervousdifferent systemwavelengths through liquid solutions of chemical systems.<ref>{{Cite journal |last1=Tomassoli |first1=Laura |last2=Silva-Dias |first2=Leonardo |last3=Dolnik |first3=Milos |last4=Epstein |first4=Irving R. |last5=Germani |first5=Raimondo |last6=Gentili |first6=Pier Luigi |date=2024-02-08 |title=Neuromorphic Engineering in Wetware: Discriminating Acoustic Frequencies through Their Effects on Chemical Waves |url=https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08429 |journal=The Journal of Physical Chemistry B |language=en |volume=128 |issue=5 |pages=1241–1255 |doi=10.1021/acs.jpcb.3c08429 |pmid=38285636 |issn=1520-6106|url-access=subscription }}</ref> An article published by AI researchers at [[Los Alamos National Laboratory]] states that, "neuromorphic computing, the next generation of [[Artificial intelligence|AI]], will be smaller, faster, and more efficient than the [[human brain]]."<ref>{{Cite web |last=Dickman |first=Kyle |title=Neuromorphic computing: the future of AI {{!}} LANL |url=https://www.lanl.gov/media/publications/1663/1269-neuromorphic-computing |access-date=2025-04-16 |website=Kyle Dickman |language=en}}</ref>
 
A key aspect of neuromorphic engineering is understanding how the [[Morphology (biology)|morphology]] of individual neurons, circuits, applications, and overall architectures creates desirable computations, affects how [[information]] is represented, influences robustness to damage, incorporates learning and development, adapts to local change (plasticity), and facilitates evolutionary change.
Line 10 ⟶ 11:
 
==Neurological inspiration==
Neuromorphic engineering is for now set apart by the inspiration it takes from what we{{who|date=Februaryis 2025}} knowknown about the structure and operations of the [[brain]]. Neuromorphic engineering translates what we know about the brain's function into computer systems. Work has mostly focused on replicating the analog nature of [[biological computation]] and the role of [[neuron]]s in [[cognition]].{{citation needed|date=February 2025}}
 
The biological processes of neurons and their [[synapse]]s are dauntingly complex, and thus very difficult to artificially simulate. A key feature of biological brains is that all of the processing in neurons uses analog [[Cell signalling|chemical signals]]. This makes it hard to replicate brains in computers because the current generation of computers is completely digital. However, the characteristics of these chemical signals can be abstracted into mathematical functions that closely capture the essence of the neuron's operations.{{citation needed|date=February 2025}}
 
The goal of neuromorphic computing is not to perfectly mimic the brain and all of its functions, but instead to extract what is known of its structure and operations to be used in a practical computing system. No neuromorphic system will claim nor attempt to reproduce every element of neurons and synapses, but all adhere to the idea that computation is highly [[distributed processing|distributed]] throughout a series of small computing elements analogous to a neuron. While this sentiment is standard, researchers chase this goal with different methods.<ref>{{Cite journal | doi = 10.1088/1741-2560/13/5/051001| title = Large-scale neuromorphic computing systems| journal = Journal of Neural Engineering| volume = 13| pages = 1–15| year = 2016| last1 = Furber | first1 = Steve| issue = 5| pmid = 27529195| bibcode = 2016JNEng..13e1001F| doi-access = free}}</ref> Anatomical neural wiring diagrams that are being imaged by electron microscopy<ref>{{cite journal |last1=Devineni |first1=Anita |title=A complete map of the fruit-fly |journal=Nature |date=2 October 2024 |volume=634 |issue=8032 |pages=35–36 |doi=10.1038/d41586-024-03029-6|pmid=39358530 }}</ref> and functional neural connection maps that could be potentially obtained via intracellular recording at scale<ref>{{cite journal |last1=Wang |first1=Jun |last2=Jung |first2=Woo-Bin |last3=Gertner |first3=Rona |last4=Park |first4=Hongkun |last5=Ham |first5=Donhee |title=Synaptic connectivity mapping among thousands of neurons via parallelized intracellular recording with a microhole electrode array |journal=Nature Biomedical Engineering |date=2025 |doi=10.1038/s41551-025-01352-5 |pmid=39934437 |url=https://www.nature.com/articles/s41551-025-01352-5|url-access=subscription }}</ref> can be used to better inspire, if not exactly mimicked, neuromorphic computing systems with more details.
 
==Implementation==
The implementation of neuromorphic computing on the hardware level can be realized by oxide-based [[memristor]]s,<ref name="Maan 1–13">{{Cite journal|last1=Maan|first1=A. K.|last2=Jayadevi|first2=D. A.|last3=James|first3=A. P.|date=2016-01-01|title=A Survey of Memristive Threshold Logic Circuits|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=PP|issue=99|pages=1734–1746|doi=10.1109/TNNLS.2016.2547842|pmid=27164608|issn=2162-237X|arxiv=1604.07121|bibcode=2016arXiv160407121M|s2cid=1798273}}</ref> [[Spintronics|spintronic]] memories, threshold switches, [[transistor]]s,<ref>{{Cite journal|title = Mott Memory and Neuromorphic Devices|journal = Proceedings of the IEEE|date = 2015-08-01|issn = 0018-9219|pages = 1289–1310|volume = 103|issue = 8|doi = 10.1109/JPROC.2015.2431914|first1 = You|last1 = Zhou|first2 = S.|last2 = Ramanathan|s2cid = 11347598|url=https://zenodo.org/record/895565}}</ref><ref name=":2">{{Cite conference|authorauthor1=Rami A. Alzahrani|author2=Alice C. Parker|title=Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling |conference=International Conference on Neuromorphic Systems 2020|date=July 2020|pages=1–8|language=EN|doi=10.1145/3407197.3407204|s2cid=220794387|doi-access=free}}</ref> among others. The implementation details overlap with the concepts of [[Artificialartificial immune system|Artificial Immune Systems.]]s. Training software-based neuromorphic systems of [[spiking neural networks]] can be achieved using error backpropagation, e.g. using [[Python (programming language)|Python]]-based frameworks such as snnTorch,<ref>{{cite arXiv|last1=Eshraghian|first1=Jason K.|last2=Ward|first2=Max|last3=Neftci |first3=Emre|last4=Wang|first4=Xinxin|last5=Lenz|first5=Gregor|last6=Dwivedi|first6=Girish|last7=Bennamoun|first7=Mohammed|last8=Jeong|first8=Doo Seok|last9=Lu|first9=Wei D.|title=Training Spiking Neural Networks Using Lessons from Deep Learning |date=1 October 2021 |class=cs.NE |eprint=2109.12894 }}</ref> or using canonical learning rules from the biological learning literature, e.g. using BindsNet.<ref>{{Cite web |url=https://github.com/Hananel-Hazan/bindsnet | title=Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch.| website=[[GitHub]]| date=31 March 2020}}</ref>
 
==Examples==
Line 27 ⟶ 28:
In June 2012, [[spintronic]] researchers at [[Purdue University]] presented a paper on the design of a neuromorphic chip using [[Spin valve|lateral spin valve]]s and [[memristor]]s. They argue that the architecture works similarly to neurons and can therefore be used to test methods of reproducing the brain's processing. In addition, these chips are significantly more energy-efficient than conventional ones.<ref name="Spin Devices Prop">{{Cite arXiv|title=Proposal For Neuromorphic Hardware Using Spin Devices|eprint=1206.3227|last1=Sharad|first1=Mrigank|last2=Augustine|first2=Charles|last3=Panagopoulos|first3=Georgios|last4=Roy|first4=Kaushik|class=cond-mat.dis-nn|year=2012}}</ref>
 
Research at [[HP Labs]] on Mott memristors has shown that while they can be non-[[Volatile memory|volatile]], the volatile behavior exhibited at temperatures significantly below the [[phase transition]] temperature can be exploited to fabricate a [[neuristor]],<ref name=":0" /> a biologically- inspired device that mimics behavior found in neurons.<ref name=":0">{{Cite journal | doi = 10.1038/nmat3510| pmid = 23241533| title = A scalable neuristor built with Mott memristors| journal = Nature Materials| volume = 12| issue = 2| pages = 114–7| year = 2012| last1 = Pickett | first1 = M. D. | last2 = Medeiros-Ribeiro | first2 = G. | last3 = Williams | first3 = R. S. | bibcode = 2013NatMa..12..114P| s2cid = 16271627}}</ref> In September 2013, they presented models and simulations that show how the spiking behavior of these neuristors can be used to form the components required for a [[Turing machine]].<ref>{{cite journal|doi=10.1088/0957-4484/24/38/384002|title=Phase transitions enable computational universality in neuristor-based cellular automata|author1=Matthew D Pickett|author2=R Stanley Williams|name-list-style=amp|date=September 2013|publisher=IOP Publishing Ltd|journal=Nanotechnology|volume=24|issue=38|pmid=23999059|bibcode=2013Nanot..24L4002P|s2cid=9910142 |at=384002}}</ref>
 
[[Neurogrid]], built by ''Brains in Silicon'' at [[Stanford University]],<ref>{{cite journal|last1=Boahen|first1=Kwabena|title=Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal=Proceedings of the IEEE|date=24 April 2014|volume=102|issue=5|pages=699–716|doi=10.1109/JPROC.2014.2313565|s2cid=17176371}}</ref> is an example of hardware designed using neuromorphic engineering principles. The circuit board is composed of 16 custom-designed chips, referred to as NeuroCores. Each NeuroCore's analog circuitry is designed to emulate neural elements for 65536 neurons, maximizing energy efficiency. The emulated neurons are connected using digital circuitry designed to maximize spiking throughput.<ref>{{cite journal|doi=10.1038/503022a|pmid = 24201264|title = Neuroelectronics: Smart connections|journal = Nature|volume = 503|issue = 7474|pages = 22–4|year = 2013|last1 = Waldrop|first1 = M. Mitchell|bibcode = 2013Natur.503...22W|doi-access = free}}</ref><ref>{{cite journal|doi=10.1109/JPROC.2014.2313565|title = Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal = Proceedings of the IEEE|volume = 102|issue = 5|pages = 699–716|year = 2014|last1 = Benjamin|first1 = Ben Varkey|last2 = Peiran Gao|last3 = McQuinn|first3 = Emmett|last4 = Choudhary|first4 = Swadesh|last5 = Chandrasekaran|first5 = Anand R.|last6 = Bussat|first6 = Jean-Marie|last7 = Alvarez-Icaza|first7 = Rodrigo|last8 = Arthur|first8 = John V.|last9 = Merolla|first9 = Paul A.|last10 = Boahen|first10 = Kwabena|s2cid = 17176371}}</ref>
Line 43 ⟶ 44:
The European Union funded a series of projects at the University of Heidelberg, which led to the development of [[BrainScaleS]] (brain-inspired multiscale computation in neuromorphic hybrid systems), a hybrid analog [[neuromorphic]] supercomputer located at Heidelberg University, Germany. It was developed as part of the Human Brain Project neuromorphic computing platform and is the complement to the [[SpiNNaker]] supercomputer (which is based on digital technology). The architecture used in BrainScaleS mimics biological neurons and their connections on a physical level; additionally, since the components are made of silicon, these model neurons operate on average 864 times (24 hours of real time is 100 seconds in the machine simulation) faster than that of their biological counterparts.<ref>{{Cite web|date=2016-03-21|title=Beyond von Neumann, Neuromorphic Computing Steadily Advances|url=https://www.hpcwire.com/2016/03/21/lacking-breakthrough-neuromorphic-computing-steadily-advance/|access-date=2021-10-08|website=HPCwire|language=en-US}}</ref>
 
In 2019, the European Union funded the project "Neuromorphic quantum computing"<ref>{{Cite journal |title=Neuromrophic Quantum Computing {{!}} Quromorphic Project {{!}} Fact Sheet {{!}} H2020 |url=https://cordis.europa.eu/project/id/828826 |access-date=2024-03-18 |website=CORDIS {{!}} European Commission |language=en |doi=10.3030/828826|url-access=subscription }}</ref> exploring the use of neuromorphic computing to perform quantum operations. Neuromorphic quantum computing<ref>{{Citation |last1=Pehle |first1=Christian |title=Neuromorphic quantum computing |date=2021-03-30 |arxiv=2005.01533 |last2=Wetterich |first2=Christof|journal=Physical Review E |volume=106 |issue=4 |page=045311 |doi=10.1103/PhysRevE.106.045311 |pmid=36397478 |bibcode=2022PhRvE.106d5311P }}</ref> (abbreviated as 'n.quantum computing') is an [[unconventional computing]] type of computing that uses neuromorphic computing to perform quantum operations.<ref>{{Cite journal |last=Wetterich |first=C. |date=2019-11-01 |title=Quantum computing with classical bits |url=https://www.sciencedirect.com/science/article/pii/S0550321319302627 |journal=Nuclear Physics B |volume=948 |page=114776 |doi=10.1016/j.nuclphysb.2019.114776 |issn=0550-3213|arxiv=1806.05960 |bibcode=2019NuPhB.94814776W }}</ref><ref>{{Citation |last1=Pehle |first1=Christian |title=Emulating quantum computation with artificial neural networks |date=2018-10-24 |arxiv=1810.10335 |last2=Meier |first2=Karlheinz |last3=Oberthaler |first3=Markus |last4=Wetterich |first4=Christof}}</ref> It was suggested that [[quantum algorithm]]s, which are algorithms that run on a realistic model of [[Quantum computing|quantum computation]], can be computed equally efficiently with neuromorphic quantum computing.<ref>{{Cite journal |last1=Carleo |first1=Giuseppe |last2=Troyer |first2=Matthias |date=2017-02-10 |title=Solving the quantum many-body problem with artificial neural networks |url=https://www.science.org/doi/10.1126/science.aag2302 |journal=Science |language=en |volume=355 |issue=6325 |pages=602–606 |doi=10.1126/science.aag2302 |pmid=28183973 |issn=0036-8075|arxiv=1606.02318 |bibcode=2017Sci...355..602C }}</ref><ref>{{Cite journal |last1=Torlai |first1=Giacomo |last2=Mazzola |first2=Guglielmo |last3=Carrasquilla |first3=Juan |last4=Troyer |first4=Matthias |last5=Melko |first5=Roger |last6=Carleo |first6=Giuseppe |date=May 2018 |title=Neural-network quantum state tomography |url=https://www.nature.com/articles/s41567-018-0048-5 |journal=Nature Physics |language=en |volume=14 |issue=5 |pages=447–450 |doi=10.1038/s41567-018-0048-5 |issn=1745-2481|arxiv=1703.05334 |bibcode=2018NatPh..14..447T }}</ref><ref>{{Cite journal |last1=Sharir |first1=Or |last2=Levine |first2=Yoav |last3=Wies |first3=Noam |last4=Carleo |first4=Giuseppe |last5=Shashua |first5=Amnon |date=2020-01-16 |title=Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems |url=https://link.aps.org/doi/10.1103/PhysRevLett.124.020503 |journal=Physical Review Letters |volume=124 |issue=2 |page=020503 |doi=10.1103/PhysRevLett.124.020503|pmid=32004039 |arxiv=1902.04057 |bibcode=2020PhRvL.124b0503S }}</ref><ref>{{Citation |last1=Broughton |first1=Michael |title=TensorFlow Quantum: A Software Framework for Quantum Machine Learning |date=2021-08-26 |arxiv=2003.02989 |last2=Verdon |first2=Guillaume |last3=McCourt |first3=Trevor |last4=Martinez |first4=Antonio J. |last5=Yoo |first5=Jae Hyeon |last6=Isakov |first6=Sergei V. |last7=Massey |first7=Philip |last8=Halavati |first8=Ramin |last9=Niu |first9=Murphy Yuezhen}}</ref><ref name="Di Ventra">{{Citation |last=Di Ventra |first=Massimiliano |title=MemComputing vs. Quantum Computing: some analogies and major differences |date=2022-03-23 |arxiv=2203.12031}}</ref> Both, traditional quantum computing and neuromorphic quantum computing are physics-based unconventional computing approaches to computations and do not follow the [[von Neumann architecture]]. They both construct a system (a circuit) that represents the physical problem at hand, and then leverage their respective physics properties of the system to seek the "minimum". Neuromorphic quantum computing and quantum computing share similar physical properties during computation.<ref name="Di Ventra"/><ref>{{Cite journal |last1=Wilkinson |first1=Samuel A. |last2=Hartmann |first2=Michael J. |date=2020-06-08 |title=Superconducting quantum many-body circuits for quantum simulation and computing |journal=Applied Physics Letters |volume=116 |issue=23 |doi=10.1063/5.0008202 |issn=0003-6951|arxiv=2003.08838 |bibcode=2020ApPhL.116w0501W }}</ref>
 
[[Brainchip]] announced in October 2021 that it was taking orders for its Akida AI Processor Development Kits<ref>{{Cite web|url=https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02438858-2A1332482?access_token=83ff96335c2d45a094df02a206a39ff4|title=Taking Orders of Akida AI Processor Development Kits|date=21 October 2021}}</ref> and in January 2022 that it was taking orders for its Akida AI Processor PCIe boards,<ref>{{cite web | url=https://www.electronics-lab.com/first-mini-pciexpress-board-with-spiking-neural-network-chip/ | title=First mini PCIexpress board with spiking neural network chip | date=January 19, 2022 }}</ref> making it the world's first commercially available neuromorphic processor.
Line 61 ⟶ 62:
 
===Neuromorphic sensors===
The concept of neuromorphic systems can be extended to [[Sensor|sensors]] (not just to computation). An example of this applied to detecting [[light]] is the [[retinomorphic sensor]] or, when employed in an array, the [[event camera]]. An event camera's pixels all register changes in brightness levels individually, which makes these cameras comparable to human eyesight in their theoretical power consumption.<ref>{{Cite journal |last=Skorka |first=Orit |date=2011-07-01 |title=Toward a digital camera to rival the human eye |url=http://electronicimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3611015 |journal=Journal of Electronic Imaging |language=en |volume=20 |issue=3 |pages=033009–033009–18 |doi=10.1117/1.3611015 |bibcode=2011JEI....20c3009S |issn=1017-9909|url-access=subscription }}</ref> In 2022, researchers from the [[Max Planck Institute for Polymer Research]] reported an organic artificial spiking neuron that exhibits the signal diversity of biological neurons while operating in the biological wetware, thus enabling ''in-situ'' neuromorphic sensing and biointerfacing applications.<ref>{{cite journal |last1=Sarkar |first1=Tanmoy |last2=Lieberth |first2=Katharina |last3=Pavlou |first3=Aristea |last4=Frank |first4=Thomas |last5=Mailaender |first5=Volker |last6=McCulloch |first6=Iain |last7=Blom |first7=Paul W. M. |last8=Torriccelli |first8=Fabrizio |last9=Gkoupidenis |first9=Paschalis |title=An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing |journal=Nature Electronics |date=7 November 2022 |volume=5 |issue=11 |pages=774–783 |doi=10.1038/s41928-022-00859-y |s2cid=253413801 |language=en |issn=2520-1131|doi-access=free |hdl=10754/686016 |hdl-access=free }}</ref><ref>{{cite journal |title=Artificial neurons emulate biological counterparts to enable synergetic operation |journal=Nature Electronics |date=10 November 2022 |volume=5 |issue=11 |pages=721–722 |doi=10.1038/s41928-022-00862-3 |s2cid=253469402 |url=https://www.nature.com/articles/s41928-022-00862-3 |language=en |issn=2520-1131|url-access=subscription }}</ref>
 
=== Military applications ===
Line 94 ⟶ 95:
* [[Hardware for artificial intelligence]]
* [[Lithionics]]
* [[Neuromorphic Olfaction Systems]]
* [[Neurorobotics]]
* [[Optical flow sensor]]