Content deleted Content added
m Open access bot: url-access updated in citation with #oabot. |
|||
(5 intermediate revisions by 5 users not shown) | |||
Line 2:
{{Use American English|date = January 2019}}
{{Use mdy dates|date = January 2019}}
{{Machine learning|Paradigms}}
'''Neuromorphic computing''' is an approach to computing that is inspired by the structure and function of the human brain.<ref>{{Cite journal |last1=Ham |first1=Donhee |last2=Park |first2=Hongkun |last3=Hwang |first3=Sungwoo |last4=Kim |first4=Kinam |title=Neuromorphic electronics based on copying and pasting the brain |url=https://www.nature.com/articles/s41928-021-00646-1 |journal=Nature Electronics |year=2021 |language=en |volume=4 |issue=9 |pages=635–644 |doi=10.1038/s41928-021-00646-1 |s2cid=240580331 |issn=2520-1131|url-access=subscription }}</ref><ref>{{Cite journal |last1=van de Burgt |first1=Yoeri |last2=Lubberman |first2=Ewout |last3=Fuller |first3=Elliot J. |last4=Keene |first4=Scott T. |last5=Faria |first5=Grégorio C. |last6=Agarwal |first6=Sapan |last7=Marinella |first7=Matthew J. |last8=Alec Talin |first8=A. |last9=Salleo |first9=Alberto |date=April 2017 |title=A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing |url=https://www.nature.com/articles/nmat4856 |journal=Nature Materials |language=en |volume=16 |issue=4 |pages=414–418 |doi=10.1038/nmat4856 |pmid=28218920 |bibcode=2017NatMa..16..414V |issn=1476-4660}}</ref> A neuromorphic computer/chip is any device that uses physical [[artificial neuron]]s to do computations.<ref>{{cite journal|last1=Mead|first1=Carver|title=Neuromorphic electronic systems|journal=Proceedings of the IEEE|date=1990|volume=78|issue=10|pages=1629–1636|doi=10.1109/5.58356|s2cid=1169506 |url=https://authors.library.caltech.edu/53090/1/00058356.pdf}}</ref><ref name=":2" /> In recent times, the term ''neuromorphic'' has been used to describe [[Analogue electronics|analog]], [[Digital electronics|digital]], [[Mixed-signal integrated circuit|mixed-mode analog/digital VLSI]], and software systems that implement models of [[neural system]]s (for [[perception]], [[motor control]], or [[multisensory integration]]). Recent advances have even discovered ways to
A key aspect of neuromorphic engineering is understanding how the [[Morphology (biology)|morphology]] of individual neurons, circuits, applications, and overall architectures creates desirable computations, affects how [[information]] is represented, influences robustness to damage, incorporates learning and development, adapts to local change (plasticity), and facilitates evolutionary change.
Line 17 ⟶ 18:
==Implementation==
The implementation of neuromorphic computing on the hardware level can be realized by oxide-based [[memristor]]s,<ref name="Maan 1–13">{{Cite journal|last1=Maan|first1=A. K.|last2=Jayadevi|first2=D. A.|last3=James|first3=A. P.|date=2016-01-01|title=A Survey of Memristive Threshold Logic Circuits|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=PP|issue=99|pages=1734–1746|doi=10.1109/TNNLS.2016.2547842|pmid=27164608|issn=2162-237X|arxiv=1604.07121|bibcode=2016arXiv160407121M|s2cid=1798273}}</ref> [[Spintronics|spintronic]] memories, threshold switches, [[transistor]]s,<ref>{{Cite journal|title = Mott Memory and Neuromorphic Devices|journal = Proceedings of the IEEE|date = 2015-08-01|issn = 0018-9219|pages = 1289–1310|volume = 103|issue = 8|doi = 10.1109/JPROC.2015.2431914|first1 = You|last1 = Zhou|first2 = S.|last2 = Ramanathan|s2cid = 11347598|url=https://zenodo.org/record/895565}}</ref><ref name=":2">{{Cite conference|
==Examples==
Line 27 ⟶ 28:
In June 2012, [[spintronic]] researchers at [[Purdue University]] presented a paper on the design of a neuromorphic chip using [[Spin valve|lateral spin valve]]s and [[memristor]]s. They argue that the architecture works similarly to neurons and can therefore be used to test methods of reproducing the brain's processing. In addition, these chips are significantly more energy-efficient than conventional ones.<ref name="Spin Devices Prop">{{Cite arXiv|title=Proposal For Neuromorphic Hardware Using Spin Devices|eprint=1206.3227|last1=Sharad|first1=Mrigank|last2=Augustine|first2=Charles|last3=Panagopoulos|first3=Georgios|last4=Roy|first4=Kaushik|class=cond-mat.dis-nn|year=2012}}</ref>
Research at [[HP Labs]] on Mott memristors has shown that while they can be non-[[Volatile memory|volatile]], the volatile behavior exhibited at temperatures significantly below the [[phase transition]] temperature can be exploited to fabricate a [[neuristor]],<ref name=":0" /> a biologically
[[Neurogrid]], built by ''Brains in Silicon'' at [[Stanford University]],<ref>{{cite journal|last1=Boahen|first1=Kwabena|title=Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal=Proceedings of the IEEE|date=24 April 2014|volume=102|issue=5|pages=699–716|doi=10.1109/JPROC.2014.2313565|s2cid=17176371}}</ref> is an example of hardware designed using neuromorphic engineering principles. The circuit board is composed of 16 custom-designed chips, referred to as NeuroCores. Each NeuroCore's analog circuitry is designed to emulate neural elements for 65536 neurons, maximizing energy efficiency. The emulated neurons are connected using digital circuitry designed to maximize spiking throughput.<ref>{{cite journal|doi=10.1038/503022a|pmid = 24201264|title = Neuroelectronics: Smart connections|journal = Nature|volume = 503|issue = 7474|pages = 22–4|year = 2013|last1 = Waldrop|first1 = M. Mitchell|bibcode = 2013Natur.503...22W|doi-access = free}}</ref><ref>{{cite journal|doi=10.1109/JPROC.2014.2313565|title = Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations|journal = Proceedings of the IEEE|volume = 102|issue = 5|pages = 699–716|year = 2014|last1 = Benjamin|first1 = Ben Varkey|last2 = Peiran Gao|last3 = McQuinn|first3 = Emmett|last4 = Choudhary|first4 = Swadesh|last5 = Chandrasekaran|first5 = Anand R.|last6 = Bussat|first6 = Jean-Marie|last7 = Alvarez-Icaza|first7 = Rodrigo|last8 = Arthur|first8 = John V.|last9 = Merolla|first9 = Paul A.|last10 = Boahen|first10 = Kwabena|s2cid = 17176371}}</ref>
Line 94 ⟶ 95:
* [[Hardware for artificial intelligence]]
* [[Lithionics]]
* [[Neuromorphic Olfaction Systems]]
* [[Neurorobotics]]
* [[Optical flow sensor]]
|