Neuromorphic computing: Difference between revisions

Content deleted Content added
m changed "mimic the human nervous system" to "detect sound at different frequencies" because the former implies the ability to replicate the entire nervous system using a liquid solution, whereas the article cited only talks about using a chemical reaction to detect sound, and its potential use case of being able to mimic the cochlea
 
(2 intermediate revisions by 2 users not shown)
Line 4:
{{Machine learning|Paradigms}}
 
'''Neuromorphic computing''' is an approach to computing that is inspired by the structure and function of the human brain.<ref>{{Cite journal |last1=Ham |first1=Donhee |last2=Park |first2=Hongkun |last3=Hwang |first3=Sungwoo |last4=Kim |first4=Kinam |title=Neuromorphic electronics based on copying and pasting the brain |url=https://www.nature.com/articles/s41928-021-00646-1 |journal=Nature Electronics |year=2021 |language=en |volume=4 |issue=9 |pages=635–644 |doi=10.1038/s41928-021-00646-1 |s2cid=240580331 |issn=2520-1131|url-access=subscription }}</ref><ref>{{Cite journal |last1=van de Burgt |first1=Yoeri |last2=Lubberman |first2=Ewout |last3=Fuller |first3=Elliot J. |last4=Keene |first4=Scott T. |last5=Faria |first5=Grégorio C. |last6=Agarwal |first6=Sapan |last7=Marinella |first7=Matthew J. |last8=Alec Talin |first8=A. |last9=Salleo |first9=Alberto |date=April 2017 |title=A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing |url=https://www.nature.com/articles/nmat4856 |journal=Nature Materials |language=en |volume=16 |issue=4 |pages=414–418 |doi=10.1038/nmat4856 |pmid=28218920 |bibcode=2017NatMa..16..414V |issn=1476-4660}}</ref> A neuromorphic computer/chip is any device that uses physical [[artificial neuron]]s to do computations.<ref>{{cite journal|last1=Mead|first1=Carver|title=Neuromorphic electronic systems|journal=Proceedings of the IEEE|date=1990|volume=78|issue=10|pages=1629–1636|doi=10.1109/5.58356|s2cid=1169506 |url=https://authors.library.caltech.edu/53090/1/00058356.pdf}}</ref><ref name=":2" /> In recent times, the term ''neuromorphic'' has been used to describe [[Analogue electronics|analog]], [[Digital electronics|digital]], [[Mixed-signal integrated circuit|mixed-mode analog/digital VLSI]], and software systems that implement models of [[neural system]]s (for [[perception]], [[motor control]], or [[multisensory integration]]). Recent advances have even discovered ways to detect sound at different wavelengths through liquid solutions of chemical systems.<ref>{{Cite journal |last1=Tomassoli |first1=Laura |last2=Silva-Dias |first2=Leonardo |last3=Dolnik |first3=Milos |last4=Epstein |first4=Irving R. |last5=Germani |first5=Raimondo |last6=Gentili |first6=Pier Luigi |date=2024-02-08 |title=Neuromorphic Engineering in Wetware: Discriminating Acoustic Frequencies through Their Effects on Chemical Waves |url=https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08429 |journal=The Journal of Physical Chemistry B |language=en |volume=128 |issue=5 |pages=1241–1255 |doi=10.1021/acs.jpcb.3c08429 |pmid=38285636 |issn=1520-6106|url-access=subscription }}</ref> An article published by AI researchers at [[Los Alamos National Laboratory]] states that, "neuromorphic computing, the [[next generation]] of [[Artificial intelligence|AI]], will be smaller, faster, and more efficient than the [[human brain]]."<ref>{{Cite web |last=Dickman |first=Kyle |title=Neuromorphic computing: the future of AI {{!}} LANL |url=https://www.lanl.gov/media/publications/1663/1269-neuromorphic-computing |access-date=2025-04-16 |website=Kyle Dickman |language=en}}</ref>
 
A key aspect of neuromorphic engineering is understanding how the [[Morphology (biology)|morphology]] of individual neurons, circuits, applications, and overall architectures creates desirable computations, affects how [[information]] is represented, influences robustness to damage, incorporates learning and development, adapts to local change (plasticity), and facilitates evolutionary change.
Line 18:
 
==Implementation==
The implementation of neuromorphic computing on the hardware level can be realized by oxide-based [[memristor]]s,<ref name="Maan 1–13">{{Cite journal|last1=Maan|first1=A. K.|last2=Jayadevi|first2=D. A.|last3=James|first3=A. P.|date=2016-01-01|title=A Survey of Memristive Threshold Logic Circuits|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=PP|issue=99|pages=1734–1746|doi=10.1109/TNNLS.2016.2547842|pmid=27164608|issn=2162-237X|arxiv=1604.07121|bibcode=2016arXiv160407121M|s2cid=1798273}}</ref> [[Spintronics|spintronic]] memories, threshold switches, [[transistor]]s,<ref>{{Cite journal|title = Mott Memory and Neuromorphic Devices|journal = Proceedings of the IEEE|date = 2015-08-01|issn = 0018-9219|pages = 1289–1310|volume = 103|issue = 8|doi = 10.1109/JPROC.2015.2431914|first1 = You|last1 = Zhou|first2 = S.|last2 = Ramanathan|s2cid = 11347598|url=https://zenodo.org/record/895565}}</ref><ref name=":2">{{Cite conference|authorauthor1=Rami A. Alzahrani|author2=Alice C. Parker|title=Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling |conference=International Conference on Neuromorphic Systems 2020|date=July 2020|pages=1–8|language=EN|doi=10.1145/3407197.3407204|s2cid=220794387|doi-access=free}}</ref> among others. The implementation details overlap with the concepts of [[Artificialartificial immune system|Artificial Immune Systems.]]s. Training software-based neuromorphic systems of [[spiking neural networks]] can be achieved using error backpropagation, e.g. using [[Python (programming language)|Python]]-based frameworks such as snnTorch,<ref>{{cite arXiv|last1=Eshraghian|first1=Jason K.|last2=Ward|first2=Max|last3=Neftci |first3=Emre|last4=Wang|first4=Xinxin|last5=Lenz|first5=Gregor|last6=Dwivedi|first6=Girish|last7=Bennamoun|first7=Mohammed|last8=Jeong|first8=Doo Seok|last9=Lu|first9=Wei D.|title=Training Spiking Neural Networks Using Lessons from Deep Learning |date=1 October 2021 |class=cs.NE |eprint=2109.12894 }}</ref> or using canonical learning rules from the biological learning literature, e.g. using BindsNet.<ref>{{Cite web |url=https://github.com/Hananel-Hazan/bindsnet | title=Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch.| website=[[GitHub]]| date=31 March 2020}}</ref>
 
==Examples==
Line 95:
* [[Hardware for artificial intelligence]]
* [[Lithionics]]
* [[Neuromorphic Olfaction Systems]]
* [[Neurorobotics]]
* [[Optical flow sensor]]