Applications of dual quaternions to 2D geometry: Difference between revisions

Content deleted Content added
remove parent category
Cicognac (talk | contribs)
mNo edit summary
 
(34 intermediate revisions by 12 users not shown)
Line 1:
{{Short description|Four-dimensional algebra over the real numbers}}
{|class="wikitable" align="right" style="text-align:center; margin-left:0.5em;"
|+Dual-complexPlanar quaternion multiplication
|-
!width=15|<math>\times</math>
Line 33 ⟶ 34:
|}
 
The '''dual-complexplanar numbersquaternions''' make up a four-dimensional [[Algebra over a field|algebra]] over the [[real number]]s.<ref>{{Citation |last last1=Matsuda|firstfirst1=Genki|title=Anti-commutative Dual Complex Numbers and 2D Rigid Transformation|date=2014| work=Mathematical Progress in Expressive Image Synthesis I: Extended and Selected Results from the Symposium MEIS2013 | pages=131–138 | editor-last=Anjyo|editor-first=Ken|series=Mathematics for Industry|publisher=Springer Japan|language=en | doi=10.1007/978-4-431-55007-5_17|isbn=9784431550075|last2=Kaji|first2=Shizuo|last3=Ochiai|first3=Hiroyuki|arxiv=1601.01754|s2cid=2173557 }}</ref><ref>Gunn C. (2011) On the Homogeneous Model of Euclidean Geometry. In: Dorst L., [[Joan Lasenby|Lasenby J.]] (eds) Guide to Geometric Algebra in Practice. Springer, London</ref> Their primary application is in representing [[rigid body motion|rigid body motions]] in 2D space. In this article, certain applications of the [[dual quaternion]] algebra to 2D geometry are discussed. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which will later be called the ''planar quaternions''.
 
Unlike multiplication of [[dual number]]s or of [[complex number]]s, that of dual-complex numbers is [[non-commutative]].
 
Unlike multiplication of [[dual number]]s or of [[complex number]]s, that of dual-complexplanar numbersquaternions is [[non-commutative]].
== Definition ==
In this article, the set of dual-complexplanar numbersquaternions is denoted <math>\mathbb {DC}</math>. A general element <math>q</math> of <math>\mathbb {DC}</math> has the form <math display="inline">A + Bi + C\varepsilon j + D\varepsilon k</math> where <math>A</math>, <math>B</math>, <math>C</math> and <math>D</math> are real numbers; <math>\varepsilon</math> is a [[dual number]] that squares to zero; and <math>i</math>, <math>j</math>, and <math>k</math> are the standard basis elements of the [[quaternions]].
 
Multiplication is done in the same way as with the quaternions, but with the additional rule that <math display="inline"> \varepsilon </math> is [[nilpotent]] of index <math>2</math>, i.e., <math display="inline"> \varepsilon^2 = 0 </math>, which in some circumstances makes <math display="inline">\varepsilon</math> comparable to an [[infinitesimal]] number. It follows that the multiplicative inverses of dual-complexplanar numbersquaternions are given by
<math display="block"> (A + Bi + C\varepsilon j + D\varepsilon k)^{-1} = \frac{A - Bi - C\varepsilon j - D\varepsilon k}{A^2+B^2}</math>
 
:The set <math>\{1, (A + Bi +i, C\varepsilon j, + D\varepsilon k)^{-1\}</math> =forms \frac{Aa -basis Biof -C\varepsilonthe jvector -space D\varepsilonof planar quaternions, k}{A^2+B^2}</math>where the scalars are real numbers.
 
The magnitude of a planar quaternion <math>q</math> is defined to be <math display="block">|q| = \sqrt{A^2 + B^2}.</math>
The set <math>\{1, i, \varepsilon j, \varepsilon k\}</math> forms a basis of the vector space of dual-complex numbers, where the scalars are real numbers.
 
TheFor magnitudeapplications ofin acomputer dual-complexgraphics, the number <math>qA + Bi + C\varepsilon j + D\varepsilon k</math> is definedcommonly torepresented beas the 4-[[tuple]] <math display="block">|q| = \sqrt{(A^2 + ,B^2}.,C,D)</math>.
 
== Matrix representation ==
For applications in computer graphics, the number <math>A + Bi + C\varepsilon j + D\varepsilon k</math> should be represented as the 4-[[tuple]] <math>(A,B,C,D)</math>.
A planar quaternion <math>q = A + Bi + C\varepsilon j + D\varepsilon k</math> has the following representation as a 2x2 complex matrix:
<math display="block">\begin{pmatrix}A + Bi & C + Di \\ 0 & A - Bi \end{pmatrix}.</math>
 
It can also be represented as a 2×2 dual number matrix:
== Terminology ==
<math display="block">\begin{pmatrix}A + C\varepsilon & -B + D\varepsilon \\ B + D\varepsilon & A - C\varepsilon\end{pmatrix}.</math>
The above two matrix representations are related to the [[Möbius transformation|Möbius transformations]] and [[Laguerre transformations]] respectively.
 
== Terminology ==
The algebra discussed in this article is sometimes called the ''dual complex numbers''. This may be a misleading name because it suggests that the algebra should take the form of either:
 
# The dual numbers, but with complex -number entries
# The complex numbers, but with dual -number entries
 
An algebra meeting either description exists. And both descriptions are equivalent. (This is due to the fact that the [[tensor product of algebras]] is commutative [[up to isomorphism]]). This algebra can be denoted as <math>\mathbb C[x]/(x^2)</math> using [[quotient ring|ring quotienting]]. The resulting algebra has a commutative product and is not discussed any further.
 
== Representing rigid body motions ==
Let <math display="block">q = A + Bi + C\varepsilon j + D\varepsilon k</math> be a unit-length planar quaternion, i.e. we must have that <math display="block">|q| = \sqrt{A^2 + B^2} = 1.</math>
 
LetThe Euclidean plane can be represented by the set <math display="blockinline">q\Pi = A\{i + Bi +x C\varepsilon j + Dy \varepsilon k</math> be\mid ax unit-length\in dual-complex number\Reals, i.e.y we must have that <math display="block">|q| =\in \sqrt{A^2 + B^2Reals\} = 1.</math>.
 
TheAn Euclidean plane can be represented by the setelement <math display="inline">\Piv = \{i + x \varepsilon j + y \varepsilon k</math> on <math>\midPi</math> xrepresents \inthe \mathbbpoint R,on ythe \in[[Euclidean \mathbbplane]] R\}with [[Cartesian coordinate]] <math>(x,y)</math>.
 
An element <math>v = i + x \varepsilon j + y \varepsilon k</math> on <math>\Pi</math> represents the point on the [[Euclidean plane]] with [[cartesian coordinate]] <math>(x,y)</math>.
 
<math>q</math> can be made to [[Group action (mathematics)|act]] on <math>v</math> by <math display="block">qvq^{-1},</math> which maps <math>v</math> onto some other point on <math>\Pi</math>.
 
We have the following (multiple) [[Polarpolar form|polar forms]]s for <math>q</math>:
 
# When <math>B \neq 0</math>, the element <math>q</math> can be written as <math display="block">\cos(\theta/2) + \sin(\theta/2)(i + x\varepsilon j + y\varepsilon k),</math> which denotes a rotation of angle <math>\theta</math> around the point <math>(x,y)</math>.
# When <math>B = 0</math>, the element <math>q</math> can be written as <math display="block">\begin{aligned}&1 + i\left(\frac{\Delta x}{2} \varepsilon j + \frac{\Delta y}{2}\varepsilon k\right)\\ = {} & 1 - \frac{\Delta y}{2}\varepsilon j + \frac{\Delta x}{2}\varepsilon k,\end{aligned}</math> which denotes a translation by vector <math>\begin{pmatrix}\Delta x \\ \Delta y\end{pmatrix}.</math>
 
== Geometric construction ==
A principled construction of the dual-complexplanar numbersquaternions can be found by first noticing that they are a subset of the [[Dual quaternion|dual-quaternions]].
 
There are two geometric interpretations of the ''dual-quaternions'', both of which can be used to derive the action of the dual-complexplanar numbersquaternions on the plane:
 
* As a way to represent [[Dual quaternion|rigid body motions in 3D space]]. The dual-complexplanar numbersquaternions can then be seen to represent a subset of those rigid-body motions. This requires some familiarity with the way the dual quaternions act on Euclidean space. We will not describe this approach here as it is [[Dual quaternion|adequately done elsewhere]].
* The dual quaternions can be understood as an "infinitesimal thickening" of the quaternions.<ref>{{Cite web|url=https://math.stackexchange.com/a/3168611/228274|title=geometry - Using dual complex numbers for combined rotation and translation|website=Mathematics Stack Exchange|access-date=2019-05-27}}</ref><ref>{{Cite web|url=https://terrytao.wordpress.com/2011/03/05/lines-in-the-euclidean-group-se2/|title=Lines in the Euclidean group SE(2)| date=2011-03-06|website=What's new|access-date=2019-05-28}}</ref><ref>{{Cite journal|last=Study|first=E.|date=December 1891| title=Von den Bewegungen und Umlegungen|journal=Mathematische Annalen|volume=39|issue=4|pages=441–565| doi=10.1007/bf01199824|s2cid=115457030 | issn=0025-5831}}</ref><ref>{{Cite journal|last=Sauer|first=R.|date=1939|title=Dr. Wilhelm Blaschke, Prof. a. d. Universität Hamburg, Ebene Kinematik, eine Vorlesung (Hamburger Math. Einzelschriften, 25. Heft, 1938). 56 S. m. 19 Abb. Leipzig-Berlin 1938, Verlag B. G. Teubner. Preis br. 4 M.|journal=ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik|volume=19|issue=2| pages=127| doi=10.1002/zamm.19390190222|issn=0044-2267|bibcode=1939ZaMM...19R.127S}}</ref> Recall that the quaternions can be used to represent [[Quaternions and spatial rotation|3D spatial rotations]], while the dual numbers can be used to represent "[[infinitesimals]]". Combining those features together allows for rotations to be varied infinitesimally. Let <math>\Pi</math> denote an infinitesimal plane lying on the unit sphere, equal to <math>\{i + x \varepsilon j + y \varepsilon k \mid x \in \mathbb R, y \in \mathbb R\}</math>. Observe that <math>\Pi</math> is a subset of the sphere, in spite of being flat (this is thanks to the behaviour of dual number infinitesimals). {{pb}} Observe then that as a subset of the dual quaternions, the planar quaternions rotate the plane <math>\Pi</math> back onto itself. The effect this has on <math>v \in \Pi</math> depends on the value of <math>q = A + Bi + C\varepsilon j + D\varepsilon k</math> in <math>qvq^{-1}</math>:
*# When <math>B\neq 0</math>, the axis of rotation points towards some point <math>p</math> on <math>\Pi</math>, so that the points on <math>\Pi</math> experience a rotation around <math>p</math>.
 
*# When <math>B = 0</math>, the axis of rotation points away from the plane, with the angle of rotation being infinitesimal. In this case, the points on <math>\Pi</math> experience a translation.
: Observe then that as a subset of the dual quaternions, the dual complex numbers rotate the plane <math>\Pi</math> back onto itself. The effect this has on <math>v \in \Pi</math> depends on the value of <math>q = A + Bi + C\varepsilon j + D\varepsilon k</math> in <math>qvq^{-1}</math>:
# When <math>B\neq 0</math>, the axis of rotation points towards some point <math>p</math> on <math>\Pi</math>, so that the points on <math>\Pi</math> experience a rotation around <math>p</math>.
# When <math>B = 0</math>, the axis of rotation points away from the plane, with the angle of rotation being infinitesimal. In this case, the points on <math>\Pi</math> experience a translation.
 
== See also ==
 
* [[Eduard Study]]
* [[QuaternionsQuaternion]]
* [[Dual numbersnumber]]
* [[Dual quaternionsquaternion]]
* [[Clifford algebra]]
* [[Euclidean plane isometry]]