Applications of dual quaternions to 2D geometry: Difference between revisions

Content deleted Content added
Removing overlinking. While Möbius and Laguerre transformations have connections to matrices of these forms, neither the dual complex numbers nor the matrices representing them ARE Möbius or Laguerre transformations, and those articles do not provide further insight or understanding about dual complex numbers.
Cicognac (talk | contribs)
mNo edit summary
 
(26 intermediate revisions by 11 users not shown)
Line 1:
{{Short description|Four-dimensional algebra over the real numbers}}
{|class="wikitable" align="right" style="text-align:center; margin-left:0.5em;"
|+Dual-complexPlanar quaternion multiplication
|-
!width=15|<math>\times</math>
Line 33 ⟶ 34:
|}
 
The '''dual-complexplanar numbersquaternions''' make up a four-dimensional [[Algebra over a field|algebra]] over the [[real number]]s.<ref>{{Citation |last last1=Matsuda|firstfirst1=Genki|title=Anti-commutative Dual Complex Numbers and 2D Rigid Transformation|date=2014| work=Mathematical Progress in Expressive Image Synthesis I: Extended and Selected Results from the Symposium MEIS2013 | pages=131–138 | editor-last=Anjyo|editor-first=Ken|series=Mathematics for Industry|publisher=Springer Japan|language=en | doi=10.1007/978-4-431-55007-5_17|isbn=9784431550075|last2=Kaji|first2=Shizuo|last3=Ochiai|first3=Hiroyuki|arxiv=1601.01754|s2cid=2173557 }}</ref><ref>Gunn C. (2011) On the Homogeneous Model of Euclidean Geometry. In: Dorst L., [[Joan Lasenby|Lasenby J.]] (eds) Guide to Geometric Algebra in Practice. Springer, London</ref> Their primary application is in representing [[rigid body motion|rigid body motions]] in 2D space. In this article, certain applications of the [[dual quaternion]] algebra to 2D geometry are discussed. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which will later be called the ''planar quaternions''.
 
Unlike multiplication of [[dual number]]s or of [[complex number]]s, that of dual-complex numbers is [[non-commutative]].
 
Unlike multiplication of [[dual number]]s or of [[complex number]]s, that of dual-complexplanar numbersquaternions is [[non-commutative]].
== Definition ==
In this article, the set of dual-complexplanar numbersquaternions is denoted <math>\mathbb {DC}</math>. A general element <math>q</math> of <math>\mathbb {DC}</math> has the form <math display="inline">A + Bi + C\varepsilon j + D\varepsilon k</math> where <math>A</math>, <math>B</math>, <math>C</math> and <math>D</math> are real numbers; <math>\varepsilon</math> is a [[dual number]] that squares to zero; and <math>i</math>, <math>j</math>, and <math>k</math> are the standard basis elements of the [[quaternions]].
 
Multiplication is done in the same way as with the quaternions, but with the additional rule that <math display="inline"> \varepsilon </math> is [[nilpotent]] of index <math>2</math>, i.e., <math display="inline"> \varepsilon^2 = 0 </math>, which in some circumstances makes <math display="inline">\varepsilon</math> comparable to an [[infinitesimal]] number. It follows that the multiplicative inverses of dual-complexplanar numbersquaternions are given by
<math display="block"> (A + Bi + C\varepsilon j + D\varepsilon k)^{-1} = \frac{A - Bi - C\varepsilon j - D\varepsilon k}{A^2+B^2}</math>
 
:The set <math>\{1, (A + Bi +i, C\varepsilon j, + D\varepsilon k)^{-1\}</math> =forms \frac{Aa -basis Biof -C\varepsilonthe jvector -space D\varepsilonof planar quaternions, k}{A^2+B^2}</math>where the scalars are real numbers.
 
The magnitude of a planar quaternion <math>q</math> is defined to be <math display="block">|q| = \sqrt{A^2 + B^2}.</math>
The set <math>\{1, i, \varepsilon j, \varepsilon k\}</math> forms a basis of the vector space of dual-complex numbers, where the scalars are real numbers.
 
TheFor magnitudeapplications ofin acomputer dual-complexgraphics, the number <math>qA + Bi + C\varepsilon j + D\varepsilon k</math> is definedcommonly torepresented beas the 4-[[tuple]] <math display="block">|q| = \sqrt{(A^2 + ,B^2}.,C,D)</math>.
 
For applications in computer graphics, the number <math>A + Bi + C\varepsilon j + D\varepsilon k</math> should be represented as the 4-[[tuple]] <math>(A,B,C,D)</math>.
 
== Matrix representation ==
A dual-complexplanar numberquaternion <math>q = A + Bi + C\varepsilon j + D\varepsilon k</math> has the following representation as a 2x2 complex matrix:
: <math display="block">\begin{pmatrix}A + Bi & C + Di \\ 0 & A - Bi \end{pmatrix}.</math>
 
It can also be represented as a 2x22×2 dual number matrix:
A dual-complex number <math>q=A + Bi + C\varepsilon j + D\varepsilon k</math> has the following representation as a 2x2 complex matrix:
: <math display="block">\begin{pmatrix}A + C\epsilonvarepsilon & -B + D\epsilonvarepsilon \\ B + D\epsilonvarepsilon & A - C\epsilonvarepsilon\end{pmatrix}.</math>
 
The above two matrix representations are related to the [[Möbius transformation|Möbius transformations]] and [[Laguerre transformations]] respectively.
: <math>\begin{pmatrix}A + Bi & C + Di \\ 0 & A - Bi \end{pmatrix}.</math>
 
It can also be represented as a 2x2 dual number matrix:
 
: <math>\begin{pmatrix}A + C\epsilon & -B + D\epsilon \\ B + D\epsilon & A - C\epsilon\end{pmatrix}.</math>
 
== Terminology ==
 
The algebra discussed in this article is sometimes called the ''dual complex numbers''. This may be a misleading name because it suggests that the algebra should take the form of either:
 
# The dual numbers, but with complex -number entries
# The complex numbers, but with dual -number entries
 
An algebra meeting either description exists. And both descriptions are equivalent. (This is due to the fact that the [[tensor product of algebras]] is commutative [[up to isomorphism]]). This algebra can be denoted as <math>\mathbb C[x]/(x^2)</math> using [[quotient ring|ring quotienting]]. The resulting algebra has a commutative product and is not discussed any further.
 
== Representing rigid body motions ==
Let <math display="block">q = A + Bi + C\varepsilon j + D\varepsilon k</math> be a unit-length planar quaternion, i.e. we must have that <math display="block">|q| = \sqrt{A^2 + B^2} = 1.</math>
 
LetThe Euclidean plane can be represented by the set <math display="blockinline">q\Pi = A\{i + Bi +x C\varepsilon j + Dy \varepsilon k</math> be\mid ax unit-length\in dual-complex number\Reals, i.e.y we must have that <math display="block">|q| =\in \sqrt{A^2 + B^2Reals\} = 1.</math>.
 
TheAn Euclidean plane can be represented by the setelement <math display="inline">\Piv = \{i + x \varepsilon j + y \varepsilon k</math> on <math>\midPi</math> xrepresents \inthe \mathbbpoint R,on ythe \in[[Euclidean \mathbbplane]] R\}with [[Cartesian coordinate]] <math>(x,y)</math>.
 
An element <math>v = i + x \varepsilon j + y \varepsilon k</math> on <math>\Pi</math> represents the point on the [[Euclidean plane]] with [[cartesian coordinate]] <math>(x,y)</math>.
 
<math>q</math> can be made to [[Group action (mathematics)|act]] on <math>v</math> by <math display="block">qvq^{-1},</math> which maps <math>v</math> onto some other point on <math>\Pi</math>.
 
We have the following (multiple) [[Polarpolar form|polar forms]]s for <math>q</math>:
 
# When <math>B \neq 0</math>, the element <math>q</math> can be written as <math display="block">\cos(\theta/2) + \sin(\theta/2)(i + x\varepsilon j + y\varepsilon k),</math> which denotes a rotation of angle <math>\theta</math> around the point <math>(x,y)</math>.
# When <math>B = 0</math>, the element <math>q</math> can be written as <math display="block">\begin{aligned}&1 + i\left(\frac{\Delta x}{2} \varepsilon j + \frac{\Delta y}{2}\varepsilon k\right)\\ = {} & 1 - \frac{\Delta y}{2}\varepsilon j + \frac{\Delta x}{2}\varepsilon k,\end{aligned}</math> which denotes a translation by vector <math>\begin{pmatrix}\Delta x \\ \Delta y\end{pmatrix}.</math>
 
== Geometric construction ==
A principled construction of the dual-complexplanar numbersquaternions can be found by first noticing that they are a subset of the [[Dual quaternion|dual-quaternions]].
 
There are two geometric interpretations of the ''dual-quaternions'', both of which can be used to derive the action of the dual-complexplanar numbersquaternions on the plane:
 
* As a way to represent [[Dual quaternion|rigid body motions in 3D space]]. The dual-complexplanar numbersquaternions can then be seen to represent a subset of those rigid-body motions. This requires some familiarity with the way the dual quaternions act on Euclidean space. We will not describe this approach here as it is [[Dual quaternion|adequately done elsewhere]].
* The dual quaternions can be understood as an "infinitesimal thickening" of the quaternions.<ref>{{Cite web| url=https://terrytao.wordpress.com/2011/03/05/lines-in-the-euclidean-group-se2/|title=Lines in the Euclidean group SE(2)| date=2011-03-06|website=What's new|access-date=2019-05-28}}</ref><ref>{{Cite journal|last=Study|first=E.|date=December 1891| title=Von den Bewegungen und Umlegungen|journal=Mathematische Annalen|volume=39|issue=4|pages=441–565| doi=10.1007/bf01199824|s2cid=115457030 | issn=0025-5831}}</ref><ref>{{Cite journal|last=Sauer|first=R.|date=1939|title=Dr. Wilhelm Blaschke, Prof. a. d. Universität Hamburg, Ebene Kinematik, eine Vorlesung (Hamburger Math. Einzelschriften, 25. Heft, 1938). 56 S. m. 19 Abb. Leipzig-Berlin 1938, Verlag B. G. Teubner. Preis br. 4 M.|journal=ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik|volume=19|issue=2| pages=127| doi=10.1002/zamm.19390190222|issn=0044-2267|bibcode=1939ZaMM...19R.127S}}</ref> Recall that the quaternions can be used to represent [[Quaternions and spatial rotation|3D spatial rotations]], while the dual numbers can be used to represent "[[infinitesimals]]". Combining those features together allows for rotations to be varied infinitesimally. Let <math>\Pi</math> denote an infinitesimal plane lying on the unit sphere, equal to <math>\{i + x \varepsilon j + y \varepsilon k \mid x \in \mathbb R, y \in \mathbb R\}</math>. Observe that <math>\Pi</math> is a subset of the sphere, in spite of being flat (this is thanks to the behaviour of dual number infinitesimals). {{pb}} Observe then that as a subset of the dual quaternions, the planar quaternions rotate the plane <math>\Pi</math> back onto itself. The effect this has on <math>v \in \Pi</math> depends on the value of <math>q = A + Bi + C\varepsilon j + D\varepsilon k</math> in <math>qvq^{-1}</math>:
*# When <math>B\neq 0</math>, the axis of rotation points towards some point <math>p</math> on <math>\Pi</math>, so that the points on <math>\Pi</math> experience a rotation around <math>p</math>.
 
*# When <math>B = 0</math>, the axis of rotation points away from the plane, with the angle of rotation being infinitesimal. In this case, the points on <math>\Pi</math> experience a translation.
: Observe then that as a subset of the dual quaternions, the dual complex numbers rotate the plane <math>\Pi</math> back onto itself. The effect this has on <math>v \in \Pi</math> depends on the value of <math>q = A + Bi + C\varepsilon j + D\varepsilon k</math> in <math>qvq^{-1}</math>:
# When <math>B\neq 0</math>, the axis of rotation points towards some point <math>p</math> on <math>\Pi</math>, so that the points on <math>\Pi</math> experience a rotation around <math>p</math>.
# When <math>B = 0</math>, the axis of rotation points away from the plane, with the angle of rotation being infinitesimal. In this case, the points on <math>\Pi</math> experience a translation.
 
== See also ==
 
* [[Eduard Study]]
* [[QuaternionsQuaternion]]
* [[Dual numbersnumber]]
* [[Dual quaternionsquaternion]]
* [[Clifford algebra]]
* [[Euclidean plane isometry]]