Content deleted Content added
Removing overlinking. While Möbius and Laguerre transformations have connections to matrices of these forms, neither the dual complex numbers nor the matrices representing them ARE Möbius or Laguerre transformations, and those articles do not provide further insight or understanding about dual complex numbers. |
mNo edit summary |
||
(26 intermediate revisions by 11 users not shown) | |||
Line 1:
{{Short description|Four-dimensional algebra over the real numbers}}
{|class="wikitable" align="right" style="text-align:center; margin-left:0.5em;"
|+
|-
!width=15|<math>\times</math>
Line 33 ⟶ 34:
|}
The '''
Unlike multiplication of [[dual number]]s or of [[complex number]]s, that of dual-complex numbers is [[non-commutative]].▼
▲Unlike multiplication of [[dual number]]s or of [[complex number]]s, that of
== Definition ==
In this article, the set of
Multiplication is done in the same way as with the quaternions, but with the additional rule that <math display="inline"> \varepsilon </math> is [[nilpotent]] of index <math>2</math>, i.e., <math display="inline"> \varepsilon^2 = 0 </math>, which in some circumstances makes <math display="inline">\varepsilon</math> comparable to an [[infinitesimal]] number. It follows that the multiplicative inverses of
<math display="block"> (A + Bi + C\varepsilon j + D\varepsilon k)^{-1} = \frac{A - Bi - C\varepsilon j - D\varepsilon k}{A^2+B^2}</math>
The magnitude of a planar quaternion <math>q</math> is defined to be <math display="block">|q| = \sqrt{A^2 + B^2}.</math>
== Matrix representation ==
A
▲A dual-complex number <math>q=A + Bi + C\varepsilon j + D\varepsilon k</math> has the following representation as a 2x2 complex matrix:
The above two matrix representations are related to the [[Möbius transformation|Möbius transformations]] and [[Laguerre transformations]] respectively.
▲: <math>\begin{pmatrix}A + Bi & C + Di \\ 0 & A - Bi \end{pmatrix}.</math>
▲It can also be represented as a 2x2 dual number matrix:
▲: <math>\begin{pmatrix}A + C\epsilon & -B + D\epsilon \\ B + D\epsilon & A - C\epsilon\end{pmatrix}.</math>
== Terminology ==
The algebra discussed in this article is sometimes called the ''dual complex numbers''. This may be a misleading name because it suggests that the algebra should take the form of either:
# The dual numbers, but with complex
# The complex numbers, but with dual
An algebra meeting either description exists. And both descriptions are equivalent. (This is due to the fact that the [[tensor product of algebras]] is commutative [[up to isomorphism]]). This algebra can be denoted as <math>\mathbb C[x]/(x^2)</math> using [[quotient ring|ring quotienting]]. The resulting algebra has a commutative product and is not discussed any further.
== Representing rigid body motions ==
Let <math display="block">q = A + Bi + C\varepsilon j + D\varepsilon k</math> be a unit-length planar quaternion, i.e. we must have that <math display="block">|q| = \sqrt{A^2 + B^2} = 1.</math>
<math>q</math> can be made to [[Group action (mathematics)|act]] on <math>v</math> by <math display="block">qvq^{-1},</math> which maps <math>v</math> onto some other point on <math>\Pi</math>.
We have the following (multiple) [[
# When <math>B \neq 0</math>, the element <math>q</math> can be written as <math display="block">\cos(\theta/2) + \sin(\theta/2)(i + x\varepsilon j + y\varepsilon k),</math> which denotes a rotation of angle <math>\theta</math> around the point <math>(x,y)</math>.
# When <math>B = 0</math>, the element <math>q</math> can be written as <math display="block">\begin{aligned}&1 + i\left(\frac{\Delta x}{2} \varepsilon j + \frac{\Delta y}{2}\varepsilon k\right)\\ = {} & 1 - \frac{\Delta y}{2}\varepsilon j + \frac{\Delta x}{2}\varepsilon k,\end{aligned}</math> which denotes a translation by vector <math>\begin{pmatrix}\Delta x \\ \Delta y\end{pmatrix}.</math>
== Geometric construction ==
A principled construction of the
There are two geometric interpretations of the ''dual-quaternions'', both of which can be used to derive the action of the
* As a way to represent [[Dual quaternion|rigid body motions in 3D space]]. The
* The dual quaternions can be understood as an "infinitesimal thickening" of the quaternions.<ref>{{Cite web| url=https://terrytao.wordpress.com/2011/03/05/lines-in-the-euclidean-group-se2/|title=Lines in the Euclidean group SE(2)| date=2011-03-06|website=What's new|access-date=2019-05-28}}</ref><ref>{{Cite journal|last=Study|first=E.|date=December 1891| title=Von den Bewegungen und Umlegungen|journal=Mathematische Annalen|volume=39|issue=4|pages=441–565| doi=10.1007/bf01199824|s2cid=115457030 | issn=0025-5831}}</ref><ref>{{Cite journal|last=Sauer|first=R.|date=1939|title=Dr. Wilhelm Blaschke, Prof. a. d. Universität Hamburg, Ebene Kinematik, eine Vorlesung (Hamburger Math. Einzelschriften, 25. Heft, 1938). 56 S. m. 19 Abb. Leipzig-Berlin 1938, Verlag B. G. Teubner. Preis br. 4 M.|journal=ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik|volume=19|issue=2| pages=127| doi=10.1002/zamm.19390190222|issn=0044-2267|bibcode=1939ZaMM...19R.127S}}</ref> Recall that the quaternions can be used to represent [[Quaternions and spatial rotation|3D spatial rotations]], while the dual numbers can be used to represent "[[infinitesimals]]". Combining those features together allows for rotations to be varied infinitesimally. Let <math>\Pi</math> denote an infinitesimal plane lying on the unit sphere, equal to <math>\{i + x \varepsilon j + y \varepsilon k \mid x \in \mathbb R, y \in \mathbb R\}</math>. Observe that <math>\Pi</math> is a subset of the sphere, in spite of being flat (this is thanks to the behaviour of dual number infinitesimals). {{pb}} Observe then that as a subset of the dual quaternions, the planar quaternions rotate the plane <math>\Pi</math> back onto itself. The effect this has on <math>v \in \Pi</math> depends on the value of <math>q = A + Bi + C\varepsilon j + D\varepsilon k</math> in <math>qvq^{-1}</math>:
*# When <math>B\neq 0</math>, the axis of rotation points towards some point <math>p</math> on <math>\Pi</math>, so that the points on <math>\Pi</math> experience a rotation around <math>p</math>.▼
*# When <math>B = 0</math>, the axis of rotation points away from the plane, with the angle of rotation being infinitesimal. In this case, the points on <math>\Pi</math> experience a translation.▼
▲# When <math>B\neq 0</math>, the axis of rotation points towards some point <math>p</math> on <math>\Pi</math>, so that the points on <math>\Pi</math> experience a rotation around <math>p</math>.
▲# When <math>B = 0</math>, the axis of rotation points away from the plane, with the angle of rotation being infinitesimal. In this case, the points on <math>\Pi</math> experience a translation.
== See also ==
* [[Eduard Study]]
* [[
* [[Dual
* [[Dual
* [[Clifford algebra]]
* [[Euclidean plane isometry]]
|