Content deleted Content added
Adding local short description: "A keyword used in some programming languages to tag variables", overriding Wikidata description "in some programming languages (C, C++, C#, Java), a variable specially marked to disable optimizations because its value may change between accesses even if it does not appear to be modified; primarily used in hardware access and in threading" (Shortdesc helper) |
CortexFiend (talk | contribs) Link suggestions feature: 2 links added. |
||
(29 intermediate revisions by 16 users not shown) | |||
Line 1:
{{Short description|
{{Lowercase title}}
In [[computer programming]], a [[Variable (computer science)|variable]] is said to be '''''volatile''''' if its [[Value (computer science)|value]] can be read or modified asynchronously by something other than the current [[thread (computing)|thread of execution]].
The value of a <code>volatile</code> variable may spontaneously change for reasons such as:
sharing values with other threads;
sharing values with asynchronous [[signal handler]]s;
accessing hardware devices via [[memory-mapped I/O]] (where you can send and receive messages from [[peripheral device]]s by reading from and writing to memory).
Support for these use cases varies considerably among the programming languages that have the <code>volatile</code> keyword.
Volatility can have implications regarding function [[calling convention]]s and how variables are stored, accessed and cached.
==In C and C++==▼
The behavior of the <code>volatile</code> keyword in C and C++ is sometimes given in terms of suppressing optimizations of an [[optimizing compiler]]: 1- don't remove existing <code>volatile</code> reads and writes, 2- don't add new <code>volatile</code> reads and writes, and 3- don't reorder <code>volatile</code> reads and writes. However, this definition is only an approximation for the benefit of new learners, and this approximate definition should not be relied upon to write real production code.
▲==In C and C++==
In C, and consequently C++, the <code>volatile</code> keyword was intended to:<ref name="auto">{{cite web |title=Publication on C++ standards committee|url= http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2016.html}}</ref>▼
*Allow preserving values across a <code>[[setjmp|longjmp]]</code>.
*Allow sharing values between signal handlers and the rest of the program in <code>volatile</code> <code>sig_atomic_t</code> objects.
The C and C++ standards allow writing portable code that shares values across a <code>[[setjmp|longjmp]]</code> in <code>volatile</code> objects, and the standards allow writing portable code that shares values between signal handlers and the rest of the code in <code>volatile</code> <code>sig_atomic_t</code> objects. Any other use of <code>volatile</code> keyword in C and C++ is inherently non-portable or incorrect. In particular, writing code with the <code>volatile</code> keyword for [[memory-mapped I/O]] devices is inherently non-portable and always requires deep knowledge of the specific target C/C++ implementation and platform.
▲In C, and consequently C++, the <code>volatile</code> keyword was intended to<ref name="auto">{{cite web |title=Publication on C++ standards committee|url= http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2016.html}}</ref>
▲*allow access to [[memory-mapped I/O]] devices
=== Multi-threading ===
It is a common misconception that the <code>volatile</code> keyword is useful in portable [[thread (computing)|multi-threading]] code in C and C++. The <code>volatile</code> keyword in C and C++ has ''never'' functioned as a useful, portable tool for ''any'' multi-threading scenario.<ref>{{cite web |date=21 September 2021 |title=Volatile Keyword In Visual C++ |url=http://msdn2.microsoft.com/en-us/library/12a04hfd.aspx |work=Microsoft MSDN}}</ref><ref>{{cite web |title=Linux Kernel Documentation – Why the "volatile" type class should not be used |url=https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html |work=kernel.org}}</ref><ref>{{cite web |author1=Scott Meyers |author2=Andrei Alexandrescu |year=2004 |title=C++ and the Perils of Double-Checked Locking |url=http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf |work=DDJ}}</ref><ref>{{cite web |author1=Jeremy Andrews |year=2007 |title=Linux: Volatile Superstition |url=http://kerneltrap.org/Linux/Volatile_Superstition |archive-url=https://web.archive.org/web/20100620121940/http://kerneltrap.org/Linux/Volatile_Superstition |archive-date=2010-06-20 |access-date=Jan 9, 2011 |publisher=kerneltrap.org}}</ref> Unlike the [[Java (programming language)|Java]] and [[C Sharp (programming language)|C#]] programming languages, operations on <code>volatile</code> variables in C and C++ are not [[atomic operation|atomic]], and operations on <code>volatile</code> variables do not have sufficient [[memory ordering]] guarantees (i.e. [[memory barrier|memory barriers]]). Most C and C++ compilers, linkers, and runtimes simply do not provide the necessary memory ordering guarantees to make the <code>volatile</code> keyword useful for ''any'' multi-threading scenario. Before the C11 and C++11 standards, programmers were forced to rely on guarantees from the individual implementations and platforms (e.g. POSIX and WIN32) to write [[thread (computing)|multi-threading]] code. With the modern C11 and C++11 standards, programmers can write portable [[thread (computing)|multi-threading]] code using new portable constructs such as the <code>std::atomic<T></code> templates.<ref>{{cite web |title=volatile (C++) |url=https://msdn.microsoft.com/en-us/library/12a04hfd.aspx |work=Microsoft MSDN|date=21 September 2021 }}</ref>
===Example of memory-mapped I/O in C===
Line 40 ⟶ 50:
</syntaxhighlight>
However, the programmer may make <code>foo</code>
To prevent the compiler from
<syntaxhighlight lang="c">
Line 55 ⟶ 65:
</syntaxhighlight>
===Optimization comparison in C===
The following C programs, and accompanying
While observing the assembly code, it is clearly visible that the code generated with <code>volatile</code> objects is more verbose, making it longer so the nature of <code>volatile</code> objects can be fulfilled. The <code>volatile</code> keyword prevents the compiler from performing optimization on code involving volatile objects, thus ensuring that each volatile variable assignment and read has a corresponding memory access. Without the <code>volatile</code> keyword, the compiler knows a variable does not need to be reread from memory at each use, because there should not be any writes to its memory ___location from any other thread or process.
Line 203 ⟶ 211:
|}
===
While intended by both C and C++, the current C standard fails to express that the <code>volatile</code> semantics refer to the lvalue, not the referenced object. The respective defect report ''DR 476'' (to C11) is still under review with [[C17 (C standard revision)|C17]].<ref>[http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2244.htm ''Clarification Request Summary for C11.''] Version 1.13, October 2017.</ref>
=== Compiler defects ===
Unlike other language features of C and C++, the <code>volatile</code> keyword is not well supported by most C/C++ implementations - even for portable uses according to the C and C++ standards. Most C/C++ implementations are buggy regarding the behavior of the <code>volatile</code> keyword.<ref>{{Cite journal |last1=Eide |first1=Eric |last2=Regehr |first2=John |date=October 2008 |title=Volatiles Are Miscompiled, and What to Do about It |url=https://users.cs.utah.edu/~regehr/papers/emsoft08-preprint.pdf |journal=Proceedings of the Eighth ACM and IEEE International Conference on Embedded Software (EMSOFT), Atlanta, Georgia, USA |via=cs.utah.edu}}</ref><ref>{{Cite web |title=Volatile Bugs, Three Years Later – Embedded in Academia |url=https://blog.regehr.org/archives/503 |access-date=2024-08-28 |website=blog.regehr.org}}</ref> Programmers should take great care whenever using the <code>volatile</code> keyword in C and C++.
==In Java==
* <code>volatile</code> reads and writes are [[atomic operation|atomic]]. In particular, reads and writes to <code>long</code> and <code>double</code> fields will not tear. (The [[atomic operation|atomic]] guarantee applies only to the <code>volatile</code> primitive value or the <code>volatile</code> reference value, and ''not'' to any Object value.)
* There is a single global ordering of all <code>volatile</code> reads and writes. In other words, a <code>volatile</code> read will read the current value (and not a past or future value), and all <code>volatile</code> reads will agree on a single global order of <code>volatile</code> writes.
* <code>volatile</code> reads and writes have "acquire" and "release" [[memory barrier]] semantics (known in the Java standard as [[happened-before|happens-before]]).<ref>Section 17.4.4: Synchronization Order
{{cite web |year=2013 |title=The Java® Language Specification, Java SE 7 Edition |url=http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4.4 |access-date=2013-05-12 |publisher=[[Oracle Corporation]]}}</ref><ref>{{cite web |date=2021-03-08 |title=Java Concurrency: Understanding the 'Volatile' Keyword |url=https://dzone.com/articles/java-concurrency-understanding-the-volatile-keyword |archive-url=https://web.archive.org/web/20210509104459/https://dzone.com/articles/java-concurrency-understanding-the-volatile-keyword |archive-date=2021-05-09 |access-date=2021-05-09 |publisher=dzone.com}}</ref> In other words, <code>volatile</code> provides guarantees about the relative order of <code>volatile</code> and non-<code>volatile</code> reads and writes. In other words, <code>volatile</code> basically provides the same memory visibility guarantees as a Java [[lock (computer science)|synchronized block]] (but without the [[mutual exclusion]] guarantees of a [[lock (computer science)|synchronized block]]).
Together, these guarantees make <code>volatile</code> into a useful [[thread (computing)|multi-threading]] construct in [[Java programming language|Java]]. In particular, the typical [[double-checked locking]] algorithm with <code>volatile</code> works correctly in [[Java programming language|Java]].<ref>{{cite web |author1=Neil Coffey |title=Double-checked Locking (DCL) and how to fix it |url=http://www.javamex.com/tutorials/double_checked_locking_fixing.shtml |access-date=2009-09-19 |publisher=Javamex}}</ref>
=== Early versions of Java ===
Before Java version 5, the Java standard did not guarantee the relative ordering of <code>volatile</code> and non-<code>volatile</code> reads and writes. In other words, <code>volatile</code> did not have "acquire" and "release" [[memory barrier]] semantics. This greatly limited its use as a [[thread (computing)|multi-threading]] construct. In particular, the typical [[double-checked locking]] algorithm with <code>volatile</code> did ''not'' work correctly.
==In C#==
In [[C Sharp (programming language)|C#]], <code>volatile</code> ensures that code accessing the field is not subject to some thread-unsafe optimizations that may be performed by the compiler, the CLR, or by hardware. When a field is marked <code>volatile</code>, the compiler is instructed to generate a "memory barrier" or "fence" around it, which prevents instruction reordering or caching tied to the field. When reading a <code>volatile</code> field, the compiler generates an ''acquire-fence'', which prevents other reads and writes to the field
Only the following types can be marked <code>volatile</code>: all reference types, <code>Single</code>, <code>Boolean</code>, <code>Byte</code>, <code>SByte</code>, <code>Int16</code>, <code>UInt16</code>, <code>Int32</code>, <code>UInt32</code>, <code>Char</code>, and all enumerated types with an underlying type of <code>Byte</code>, <code>SByte</code>, <code>Int16</code>, <code>UInt16</code>, <code>Int32</code>, or <code>UInt32</code>.<ref>{{cite book |last1=Richter |first1=Jeffrey |title=CLR Via C# |url=https://archive.org/details/clrviac00rich_000 |url-access=limited |publisher=Microsoft Press |date=February 11, 2010 |pages=[https://archive.org/details/clrviac00rich_000/page/n200 183] |chapter=Chapter 7: Constants and Fields |isbn=978-0-7356-2704-8}}</ref> (This excludes value [[struct]]s, as well as the primitive types <code>Double</code>, <code>Int64</code>, <code>UInt64</code> and <code>Decimal</code>.)
Line 256 ⟶ 245:
==In Fortran==
<code>VOLATILE</code> is part of the [[Fortran#Fortran 2003|Fortran 2003]] standard,<ref>{{cite web
<syntaxhighlight lang="fortran">
integer, volatile :: i ! When not defined volatile the following two lines of code are identical
|