Content deleted Content added
→In C and C++: no optimisation for volatile |
CortexFiend (talk | contribs) Link suggestions feature: 2 links added. |
||
(22 intermediate revisions by 10 users not shown) | |||
Line 1:
{{Short description|
{{Lowercase title}}
In [[computer programming]], a [[Variable (computer science)|variable]] is said to be '''''volatile''''' if its [[Value (computer science)|value]] can be read or modified asynchronously by something other than the current [[thread (computing)|thread of execution]].
The value of a <code>volatile</code> variable may spontaneously change for reasons such as:
sharing values with other threads;
sharing values with asynchronous [[signal handler]]s;
accessing hardware devices via [[memory-mapped I/O]] (where you can send and receive messages from [[peripheral device]]s by reading from and writing to memory).
Support for these use cases varies considerably among the programming languages that have the <code>volatile</code> keyword.
Volatility can have implications regarding function [[calling convention]]s and how variables are stored, accessed and cached.
==In C and C++==▼
▲==In C and C++==
The behavior of the <code>volatile</code> keyword in C and C++ is sometimes given in terms of suppressing optimizations of an [[optimizing compiler]]: 1- don't remove existing <code>volatile</code> reads and writes, 2- don't add new <code>volatile</code> reads and writes, and 3- don't reorder <code>volatile</code> reads and writes. However, this definition is only an approximation for the benefit of new learners, and this approximate definition should not be relied upon to write real production code.
In C, and consequently C++, the <code>volatile</code> keyword was intended to<ref name="auto">{{cite web |title=Publication on C++ standards committee|url= http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2016.html}}</ref>:▼
*allow access to [[memory-mapped I/O]] devices▼
▲In C, and consequently C++, the <code>volatile</code> keyword was intended to:<ref name="auto">{{cite web |title=Publication on C++ standards committee|url= http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2016.html}}</ref>
*Allow preserving values across a <code>[[setjmp|longjmp]]</code>.
*Allow sharing values between signal handlers and the rest of the program in <code>volatile</code> <code>sig_atomic_t</code> objects.
The C and C++ standards allow writing portable code that shares values across a <code>[[setjmp|longjmp]]</code> in <code>volatile</code> objects, and the standards allow writing portable code that shares values between signal handlers and the rest of the code in <code>volatile</code> <code>sig_atomic_t</code> objects. Any other use of <code>volatile</code> keyword in C and C++ is inherently non-portable or incorrect. In particular, writing code with the <code>volatile</code> keyword for [[memory-mapped I/O]] devices is inherently non-portable and always requires deep knowledge of the specific target C/C++ implementation and platform.
While intended by both C and C++, the C standards fail to express that the <code>volatile</code> semantics refer to the lvalue, not the referenced object. The respective defect report ''DR 476'' (to C11) is still under review with [[C17 (C standard revision)|C17]].<ref>[http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2244.htm ''Clarification Request Summary for C11.''] Version 1.13, October 2017.</ref>▼
=== Multi-threading ===
It is a common misconception that the <code>volatile</code> keyword is useful in portable [[thread (computing)|multi-threading]] code in C and C++. The <code>volatile</code> keyword in C and C++ has ''never'' functioned as a useful, portable tool for ''any'' multi-threading scenario.<ref>{{cite web |date=21 September 2021 |title=Volatile Keyword In Visual C++ |url=http://msdn2.microsoft.com/en-us/library/12a04hfd.aspx |work=Microsoft MSDN}}</ref><ref>{{cite web |title=Linux Kernel Documentation – Why the "volatile" type class should not be used |url=https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html |work=kernel.org}}</ref><ref>{{cite web |author1=Scott Meyers |author2=Andrei Alexandrescu |year=2004 |title=C++ and the Perils of Double-Checked Locking |url=http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf |work=DDJ}}</ref><ref>{{cite web |author1=Jeremy Andrews |year=2007 |title=Linux: Volatile Superstition |url=http://kerneltrap.org/Linux/Volatile_Superstition |archive-url=https://web.archive.org/web/20100620121940/http://kerneltrap.org/Linux/Volatile_Superstition |archive-date=2010-06-20 |access-date=Jan 9, 2011 |publisher=kerneltrap.org}}</ref> Unlike the [[Java (programming language)|Java]] and [[C Sharp (programming language)|C#]] programming languages, operations on <code>volatile</code> variables in C and C++ are not [[atomic operation|atomic]], and operations on <code>volatile</code> variables do not have sufficient [[memory ordering]] guarantees (i.e. [[memory barrier|memory barriers]]). Most C and C++ compilers, linkers, and runtimes simply do not provide the necessary memory ordering guarantees to make the <code>volatile</code> keyword useful for ''any'' multi-threading scenario. Before the C11 and C++11 standards, programmers were forced to rely on guarantees from the individual implementations and platforms (e.g. POSIX and WIN32) to write [[thread (computing)|multi-threading]] code. With the modern C11 and C++11 standards, programmers can write portable [[thread (computing)|multi-threading]] code using new portable constructs such as the <code>std::atomic<T></code> templates.<ref>{{cite web |title=volatile (C++) |url=https://msdn.microsoft.com/en-us/library/12a04hfd.aspx |work=Microsoft MSDN|date=21 September 2021 }}</ref>
===Example of memory-mapped I/O in C===
Line 45 ⟶ 50:
</syntaxhighlight>
However, the programmer may make <code>foo</code>
To prevent the compiler from
<syntaxhighlight lang="c">
Line 60 ⟶ 65:
</syntaxhighlight>
===Optimization comparison in C===
Line 208 ⟶ 211:
|}
===
▲While intended by both C and C++, the current C
=== Compiler defects ===
Unlike other language features of C and C++, the <code>volatile</code> keyword is not well supported by most C/C++ implementations - even for portable uses according to the C and C++ standards. Most C/C++ implementations are buggy regarding the behavior of the <code>volatile</code> keyword.<ref>{{Cite journal |last1=Eide |first1=Eric |last2=Regehr |first2=John |date=October 2008 |title=Volatiles Are Miscompiled, and What to Do about It |url=https://users.cs.utah.edu/~regehr/papers/emsoft08-preprint.pdf |journal=Proceedings of the Eighth ACM and IEEE International Conference on Embedded Software (EMSOFT), Atlanta, Georgia, USA |via=cs.utah.edu}}</ref><ref>{{Cite web |title=Volatile Bugs, Three Years Later – Embedded in Academia |url=https://blog.regehr.org/archives/503 |access-date=2024-08-28 |website=blog.regehr.org}}</ref> Programmers should take great care whenever using the <code>volatile</code> keyword in C and C++.
==In Java==
* <code>volatile</code> reads and writes are [[atomic operation|atomic]]. In particular, reads and writes to <code>long</code> and <code>double</code> fields will not tear. (The [[atomic operation|atomic]] guarantee applies only to the <code>volatile</code> primitive value or the <code>volatile</code> reference value, and ''not'' to any Object value.)
* There is a single global ordering of all <code>volatile</code> reads and writes. In other words, a <code>volatile</code> read will read the current value (and not a past or future value), and all <code>volatile</code> reads will agree on a single global order of <code>volatile</code> writes.
* <code>volatile</code> reads and writes have "acquire" and "release" [[memory barrier]] semantics (known in the Java standard as [[happened-before|happens-before]]).<ref>Section 17.4.4: Synchronization Order
{{cite web |year=2013 |title=The Java® Language Specification, Java SE 7 Edition |url=http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4.4 |access-date=2013-05-12 |publisher=[[Oracle Corporation]]}}</ref><ref>{{cite web |date=2021-03-08 |title=Java Concurrency: Understanding the 'Volatile' Keyword |url=https://dzone.com/articles/java-concurrency-understanding-the-volatile-keyword |archive-url=https://web.archive.org/web/20210509104459/https://dzone.com/articles/java-concurrency-understanding-the-volatile-keyword |archive-date=2021-05-09 |access-date=2021-05-09 |publisher=dzone.com}}</ref> In other words, <code>volatile</code> provides guarantees about the relative order of <code>volatile</code> and non-<code>volatile</code> reads and writes. In other words, <code>volatile</code> basically provides the same memory visibility guarantees as a Java [[lock (computer science)|synchronized block]] (but without the [[mutual exclusion]] guarantees of a [[lock (computer science)|synchronized block]]).
Together, these guarantees make <code>volatile</code> into a useful [[thread (computing)|multi-threading]] construct in [[Java programming language|Java]]. In particular, the typical [[double-checked locking]] algorithm with <code>volatile</code> works correctly in [[Java programming language|Java]].<ref>{{cite web |author1=Neil Coffey |title=Double-checked Locking (DCL) and how to fix it |url=http://www.javamex.com/tutorials/double_checked_locking_fixing.shtml |access-date=2009-09-19 |publisher=Javamex}}</ref>
=== Early versions of Java ===
Before Java version 5, the Java standard did not guarantee the relative ordering of <code>volatile</code> and non-<code>volatile</code> reads and writes. In other words, <code>volatile</code> did not have "acquire" and "release" [[memory barrier]] semantics. This greatly limited its use as a [[thread (computing)|multi-threading]] construct. In particular, the typical [[double-checked locking]] algorithm with <code>volatile</code> did ''not'' work correctly.
==In C#==
In [[C Sharp (programming language)|C#]], <code>volatile</code> ensures that code accessing the field is not subject to some thread-unsafe optimizations that may be performed by the compiler, the CLR, or by hardware. When a field is marked <code>volatile</code>, the compiler is instructed to generate a "memory barrier" or "fence" around it, which prevents instruction reordering or caching tied to the field. When reading a <code>volatile</code> field, the compiler generates an ''acquire-fence'', which prevents other reads and writes to the field
Only the following types can be marked <code>volatile</code>: all reference types, <code>Single</code>, <code>Boolean</code>, <code>Byte</code>, <code>SByte</code>, <code>Int16</code>, <code>UInt16</code>, <code>Int32</code>, <code>UInt32</code>, <code>Char</code>, and all enumerated types with an underlying type of <code>Byte</code>, <code>SByte</code>, <code>Int16</code>, <code>UInt16</code>, <code>Int32</code>, or <code>UInt32</code>.<ref>{{cite book |last1=Richter |first1=Jeffrey |title=CLR Via C# |url=https://archive.org/details/clrviac00rich_000 |url-access=limited |publisher=Microsoft Press |date=February 11, 2010 |pages=[https://archive.org/details/clrviac00rich_000/page/n200 183] |chapter=Chapter 7: Constants and Fields |isbn=978-0-7356-2704-8}}</ref> (This excludes value [[struct]]s, as well as the primitive types <code>Double</code>, <code>Int64</code>, <code>UInt64</code> and <code>Decimal</code>.)
|