Content deleted Content added
→Examples: fixed numerical typo 477 -> 577, the sum of the left side and that (577, 408) is a solution to x^2 - 2y^2 = 1 can both easily be verified |
Link suggestions feature: 3 links added. |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 15:
Another instance of quadratic forms is [[Pell's equation]] <math>x^2-ny^2=1</math>.
Binary quadratic forms are closely related to ideals in quadratic fields
The classical [[theta function]] of 2 variables is <math> \sum_{(m,n)\in \mathbb{Z}^2} q^{m^2 + n^2}</math>, if <math>f(x,y)</math> is a positive [[definite quadratic form]] then <math> \sum_{(m,n)\in \mathbb{Z}^2} q^{f(m,n)}</math> is a theta function.
== Equivalence ==
Line 55:
: <math> \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix} </math>
is an automorphism of the form <math>f = x^2 - 2y^2</math>. The automorphisms of a form
==Representation==
Line 144:
"Composition" can also refer to a binary operation on representations of integers by forms. This operation is substantially more complicated{{citation needed|date=March 2017}}<!--<ref>{{harvnb|Shanks|1989}}</ref> full citation not in article yet --> than composition of forms, but arose first historically. We will consider such operations in a separate section below.
Composition means taking 2 quadratic forms of the same discriminant and combining them to create a quadratic form of the same discriminant,
=== Composing forms and classes ===
Line 174:
The general theory of quadratic forms was initiated by [[Lagrange]] in 1775 in his ''[[List of important publications in mathematics#Recherches d'Arithmétique|Recherches d'Arithmétique]]''. Lagrange was the first to realize that "a coherent general theory required the simulatenous consideration of all forms."<ref>{{harvnb|Weil|2001|loc=p.318}}</ref> He was the first to recognize the importance of the discriminant and to define the essential notions of equivalence and reduction, which, according to Weil, have "dominated the whole subject of quadratic forms ever since".<ref>{{harvnb|Weil|2001|loc=p.317}}</ref> Lagrange showed that there are finitely many equivalence classes of given discriminant, thereby defining for the first time an arithmetic [[Ideal class group|class number]]. His introduction of reduction allowed the quick enumeration of the classes of given discriminant and foreshadowed the eventual development of [[infrastructure (number theory)|infrastructure]]. In 1798, [[Adrien-Marie Legendre|Legendre]] published ''Essai sur la théorie des nombres'', which summarized the work of Euler and Lagrange and added some of his own contributions, including the first glimpse of a composition operation on forms.
The theory was vastly extended and refined by [[Carl Friedrich Gauss|Gauss]] in Section V of ''[[List of important publications in mathematics#Disquisitiones Arithmeticae|Disquisitiones Arithmeticae]]''. Gauss introduced a very general version of a [[composition operator]] that allows composing even forms of different discriminants and imprimitive forms. He replaced Lagrange's equivalence with the more precise notion of proper equivalence, and this enabled him to show that the primitive classes of given discriminant form a [[group (mathematics)|group]] under the composition operation. He introduced genus theory, which gives a powerful way to understand the quotient of the class group by the subgroup of squares. (Gauss and many subsequent authors wrote 2''b'' in place of ''b''; the modern convention allowing the coefficient of ''xy'' to be odd is due to [[Gotthold Eisenstein|Eisenstein]]).
These investigations of Gauss strongly influenced both the arithmetical theory of quadratic forms in more than two variables and the subsequent development of algebraic number theory, where quadratic fields are replaced with more general [[number field]]s. But the impact was not immediate. Section V of ''Disquisitiones'' contains truly revolutionary ideas and involves very complicated computations, sometimes left to the reader. Combined, the novelty and complexity made Section V notoriously difficult. [[Dirichlet]] published simplifications of the theory that made it accessible to a broader audience. The culmination of this work is his text ''[[List of important publications in mathematics#Vorlesungen über Zahlentheorie|Vorlesungen über Zahlentheorie]]''. The third edition of this work includes two supplements by [[Dedekind]]. Supplement XI introduces [[ring theory]], and from then on, especially after the 1897 publication of [[Hilbert|Hilbert's]] ''[[List of important publications in mathematics#Zahlbericht|Zahlbericht]]'', the theory of binary quadratic forms lost its preeminent position in [[algebraic number theory]] and became overshadowed by the more general theory of [[algebraic number fields]].
Line 184:
*[[Fermat's theorem on sums of two squares]]
* [[Legendre symbol]]
* [[Brahmagupta's identity]]
==Notes==
Line 191 ⟶ 192:
* Johannes Buchmann, Ulrich Vollmer: ''Binary Quadratic Forms'', Springer, Berlin 2007, {{ISBN|3-540-46367-4}}
* Duncan A. Buell: ''Binary Quadratic Forms'', Springer, New York 1989
* David A. Cox, ''Primes of the form <math>x^2 +
* {{Citation
| last=Cohen
|