Content deleted Content added
m Reverted 1 edit by 179.51.142.52 (talk) to last revision by Kvng |
m →External links: HTTP to HTTPS for SourceForge |
||
(14 intermediate revisions by 8 users not shown) | |||
Line 1:
{{Short description|Technique used in signal processing and data compression}}
A '''discrete cosine transform''' ('''DCT''') expresses a finite sequence of [[data points]] in terms of a sum of [[cosine]] functions oscillating at different [[frequency|frequencies]]. The DCT, first proposed by [[Nasir Ahmed (engineer)|Nasir Ahmed]] in 1972, is a widely used transformation technique in [[signal processing]] and [[data compression]]. It is used in most [[digital media]], including [[digital images]] (such as [[JPEG]] and [[HEIF]]), [[digital video]] (such as [[MPEG]] and {{nowrap|[[H.26x]]}}), [[digital audio]] (such as [[Dolby Digital]], [[MP3]] and [[Advanced Audio Coding|AAC]]), [[digital television]] (such as [[SDTV]], [[HDTV]] and [[Video on demand|VOD]]), [[digital radio]] (such as [[AAC+]] and [[DAB+]]), and [[speech coding]] (such as [[AAC-LD]], [[Siren (codec)|Siren]] and [[Opus (audio format)|Opus]]). DCTs are also important to numerous other applications in [[science and engineering]], such as [[digital signal processing]], [[telecommunication]] devices, reducing [[network bandwidth]] usage, and [[spectral method]]s for the numerical solution of [[partial differential equations]].
Line 12 ⟶ 11:
== History ==
The DCT was first conceived by [[Nasir Ahmed (engineer)|Nasir Ahmed
Since its introduction in 1974, there has been significant research on the DCT.<ref name="t81"/> In 1977, Wen-Hsiung Chen published a paper with C. Harrison Smith and Stanley C. Fralick presenting a fast DCT algorithm.<ref name="A Fast Computational Algorithm for">{{cite journal |last1=Chen |first1=Wen-Hsiung |last2=Smith |first2=C. H. |last3=Fralick |first3=S. C. |title=A Fast Computational Algorithm for the Discrete Cosine Transform |journal=[[IEEE Transactions on Communications]] |date=September 1977 |volume=25 |issue=9 |pages=1004–1009 |doi=10.1109/TCOM.1977.1093941}}</ref><ref name="t81"/> Further developments include a 1978 paper by M. J. Narasimha and A. M. Peterson, and a 1984 paper by B. G. Lee.<ref name="t81"/> These research papers, along with the original 1974 Ahmed paper and the 1977 Chen paper, were cited by the [[Joint Photographic Experts Group]] as the basis for [[JPEG]]'s lossy image compression algorithm in 1992.<ref name="t81"/><ref name="chen">{{cite journal |last1=Smith |first1=C. |last2=Fralick |first2=S. |title=A Fast Computational Algorithm for the Discrete Cosine Transform |journal=IEEE Transactions on Communications |date=1977 |volume=25 |issue=9 |pages=1004–1009 |doi=10.1109/TCOM.1977.1093941 |issn=0090-6778}}</ref>
Line 276 ⟶ 275:
These different boundary conditions strongly affect the applications of the transform and lead to uniquely useful properties for the various DCT types. Most directly, when using Fourier-related transforms to solve [[partial differential equation]]s by [[spectral method]]s, the boundary conditions are directly specified as a part of the problem being solved. Or, for the MDCT (based on the type-IV DCT), the boundary conditions are intimately involved in the MDCT's critical property of time-___domain aliasing cancellation. In a more subtle fashion, the boundary conditions are responsible for the ''energy compactification'' properties that make DCTs useful for image and audio compression, because the boundaries affect the rate of convergence of any Fourier-like series.
In particular, it is well known that any [[Classification of discontinuities|discontinuities]] in a function reduce the [[rate of convergence]] of the Fourier series so that more sinusoids are needed to represent the function with a given accuracy. The same principle governs the usefulness of the DFT and other transforms for signal compression; the smoother a function is, the fewer terms in its DFT or DCT are required to represent it accurately, and the more it can be compressed.{{efn|Here, we think of the DFT or DCT as approximations for the [[Fourier series]] or [[cosine series]] of a function, respectively, in order to talk about its smoothness.}} However, the implicit periodicity of the DFT means that discontinuities usually occur at the boundaries: any random segment of a signal is unlikely to have the same value at both the left and right boundaries.{{efn|A similar problem arises for the DST, in which the odd left boundary condition implies a discontinuity for any function that does not happen to be zero at that boundary.}} In contrast, a DCT where ''both'' boundaries are even ''always'' yields a continuous extension at the boundaries (although the [[slope]] is generally discontinuous). This is why DCTs, and in particular DCTs of types I, II, V, and VI (the types that have two even boundaries) generally perform better for signal compression than DFTs and DSTs. In practice, a type-II DCT is usually preferred for such applications, in part for reasons of computational convenience.
== Formal definition ==
Line 287 ⟶ 286:
\qquad \text{ for } ~ k = 0,\ \ldots\ N-1 ~.</math>
Some authors further multiply the <math>x_0 </math> and <math> x_{N-1} </math> terms by <math> \sqrt{2\,}\
The DCT-I is exactly equivalent (up to an overall scale factor of 2), to a
Note, however, that the DCT-I is not defined for <math>
Thus, the DCT-I corresponds to the boundary conditions: <math>
=== DCT-II ===
Line 300 ⟶ 299:
\qquad \text{ for } ~ k = 0,\ \dots\ N-1 ~.</math>
The DCT-II is probably the most commonly used form, and is often simply referred to as
This transform is exactly equivalent (up to an overall scale factor of 2) to a
Some authors further multiply the <math>
The DCT-II implies the boundary conditions: <math>
=== DCT-III ===
Line 314 ⟶ 313:
\qquad \text{ for } ~ k = 0,\ \ldots\ N-1 ~.</math>
Because it is the inverse of DCT-II up to a scale factor (see below), this form is sometimes simply referred to as
Some authors divide the <math>x_0</math> term by <math>\sqrt{2}</math> instead of by 2 (resulting in an overall <math>x_0/\sqrt{2}</math> term) and multiply the resulting matrix by an overall scale factor of <math display="inline"> \sqrt{2/N}</math> (see above for the corresponding change in DCT-II), so that the DCT-II and DCT-III are transposes of one another. This makes the DCT-III matrix [[orthogonal matrix|orthogonal]], but breaks the direct correspondence with a real-even
The DCT-III implies the boundary conditions: <math>x_n</math> is even around <math>n = 0</math> and odd around <math>n = N ;</math> <math>X_k</math> is even around <math>k = -1/2</math> and even around <math>k = N - 1/2.</math>
Line 329 ⟶ 328:
A variant of the DCT-IV, where data from different transforms are ''overlapped'', is called the [[modified discrete cosine transform]] (MDCT).<ref>{{harvnb|Malvar|1992}}</ref>
The DCT-IV implies the boundary conditions: <math>
=== DCT V-VIII ===
DCTs of types I–IV treat both boundaries consistently regarding the point of symmetry: they are even/odd around either a data point for both boundaries or halfway between two data points for both boundaries. By contrast, DCTs of types V-VIII imply boundaries that are even/odd around a data point for one boundary and halfway between two data points for the other boundary.
In other words, DCT types I–IV are equivalent to real-even
However, these variants seem to be rarely used in practice. One reason, perhaps, is that [[Fast Fourier transform|FFT]] algorithms for odd-length DFTs are generally more complicated than [[Fast Fourier transform|FFT]] algorithms for even-length DFTs (e.g. the simplest radix-2 algorithms are only for even lengths), and this increased intricacy carries over to the DCTs as described below.
Line 343 ⟶ 342:
Using the normalization conventions above, the inverse of DCT-I is DCT-I multiplied by 2/(''N'' − 1). The inverse of DCT-IV is DCT-IV multiplied by 2/''N''. The inverse of DCT-II is DCT-III multiplied by 2/''N'' and vice versa.<ref name="pubRaoYip"/>
Like for the
== Multidimensional DCTs ==
Line 507 ⟶ 506:
Specialized DCT algorithms, on the other hand, see widespread use for transforms of small, fixed sizes such as the {{nobr| 8 × 8 }} DCT-II used in [[JPEG]] compression, or the small DCTs (or MDCTs) typically used in audio compression. (Reduced code size may also be a reason to use a specialized DCT for embedded-device applications.)
In fact, even the DCT algorithms using an ordinary FFT are sometimes equivalent to pruning the redundant operations from a larger FFT of real-symmetric data, and they can even be optimal from the perspective of arithmetic counts. For example, a type-II DCT is equivalent to a DFT of size <math>~ 4N ~</math> with real-even symmetry whose even-indexed elements are zero. One of the most common methods for computing this via an FFT (e.g. the method used in [[FFTPACK]] and [[Fastest Fourier Transform in the West|FFTW]]) was described by {{harvtxt|Narasimha|Peterson|1978}} and {{harvtxt|Makhoul|1980}}, and this method in hindsight can be seen as one step of a radix-4 decimation-in-time Cooley–Tukey algorithm applied to the "logical" real-even DFT corresponding to the DCT-II.{{efn|
The radix-4 step reduces the size <math>~ 4N ~</math> DFT to four size <math>~ N ~</math> DFTs of real data, two of which are zero, and two of which are equal to one another by the even symmetry. Hence giving a single size <math>~ N ~</math> FFT of real data plus <math>~ \mathcal{O}(N) ~</math> [[butterfly (FFT algorithm)|butterflies]], once the trivial and / or duplicate parts are eliminated and / or merged.
}}
Line 518 ⟶ 517:
==Example of IDCT==
[[File:DCT filter comparison.png|thumb|right|An example showing eight different filters applied to a test image (top left) by multiplying its DCT spectrum (top right) with each filter.]]
Consider this {{resx|8x8}} [[grayscale image]] of capital letter A.
[[File:letter-a-8x8.png|frame|center|Original size, scaled 10x (nearest neighbor), scaled 10x (bilinear).]]
Line 634 ⟶ 633:
* Takuya Ooura: General Purpose FFT Package, [http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html FFT Package 1-dim / 2-dim]. Free C & FORTRAN libraries for computing fast DCTs (types II–III) in one, two or three dimensions, power of 2 sizes.
* Tim Kientzle: Fast algorithms for computing the 8-point DCT and IDCT, [http://drdobbs.com/parallel/184410889 Algorithm Alley].
* [
{{Compression Methods|state=expanded}}
Line 647 ⟶ 646:
[[Category:Data compression]]
[[Category:Image compression]]
[[Category:H.26x]]
[[Category:JPEG]]
|