Discrete cosine transform: Difference between revisions

Content deleted Content added
m review: rm unnec quotes
Bender the Bot (talk | contribs)
m External links: HTTP to HTTPS for SourceForge
 
(3 intermediate revisions by 3 users not shown)
Line 317:
Some authors divide the <math>x_0</math> term by <math>\sqrt{2}</math> instead of by 2 (resulting in an overall <math>x_0/\sqrt{2}</math> term) and multiply the resulting matrix by an overall scale factor of <math display="inline"> \sqrt{2/N}</math> (see above for the corresponding change in DCT-II), so that the DCT-II and DCT-III are transposes of one another. This makes the DCT-III matrix [[orthogonal matrix|orthogonal]], but breaks the direct correspondence with a real-even DFT of half-shifted output.
 
The DCT-III implies the boundary conditions: <math>x_n</math> is even around <math>n = 0</math> and odd around <math>n = N ;</math> <math>X_k</math> is even around <math>k = -1/2</math> and even around <math>k = N - 1/2.</math><!--[[User:Kvng/RTH]]-->
 
=== DCT-IV ===
Line 328:
A variant of the DCT-IV, where data from different transforms are ''overlapped'', is called the [[modified discrete cosine transform]] (MDCT).<ref>{{harvnb|Malvar|1992}}</ref>
 
The DCT-IV implies the boundary conditions: <math> x_n </math> is even around <math>n = -1/2</math> and odd around <math>n = N - 1/2;</math>; similarly for <math>X_k.</math>.<!--[[User:Kvng/RTH]]-->
 
=== DCT V-VIII ===
Line 506:
Specialized DCT algorithms, on the other hand, see widespread use for transforms of small, fixed sizes such as the {{nobr| 8 × 8 }} DCT-II used in [[JPEG]] compression, or the small DCTs (or MDCTs) typically used in audio compression. (Reduced code size may also be a reason to use a specialized DCT for embedded-device applications.)
 
In fact, even the DCT algorithms using an ordinary FFT are sometimes equivalent to pruning the redundant operations from a larger FFT of real-symmetric data, and they can even be optimal from the perspective of arithmetic counts. For example, a type-II DCT is equivalent to a DFT of size <math>~ 4N ~</math> with real-even symmetry whose even-indexed elements are zero. One of the most common methods for computing this via an FFT (e.g. the method used in [[FFTPACK]] and [[Fastest Fourier Transform in the West|FFTW]]) was described by {{harvtxt|Narasimha|Peterson|1978}} and {{harvtxt|Makhoul|1980}}, and this method in hindsight can be seen as one step of a radix-4 decimation-in-time Cooley–Tukey algorithm applied to the "logical" real-even DFT corresponding to the DCT-II.{{efn|
The radix-4 step reduces the size <math>~ 4N ~</math> DFT to four size <math>~ N ~</math> DFTs of real data, two of which are zero, and two of which are equal to one another by the even symmetry. Hence giving a single size <math>~ N ~</math> FFT of real data plus <math>~ \mathcal{O}(N) ~</math> [[butterfly (FFT algorithm)|butterflies]], once the trivial and / or duplicate parts are eliminated and / or merged.
}}
Line 633:
* Takuya Ooura: General Purpose FFT Package, [http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html FFT Package 1-dim / 2-dim]. Free C & FORTRAN libraries for computing fast DCTs (types II–III) in one, two or three dimensions, power of 2 sizes.
* Tim Kientzle: Fast algorithms for computing the 8-point DCT and IDCT, [http://drdobbs.com/parallel/184410889 Algorithm Alley].
* [httphttps://ltfat.sourceforge.net/ LTFAT] is a free Matlab/Octave toolbox with interfaces to the FFTW implementation of the DCTs and DSTs of type I-IV.
 
{{Compression Methods|state=expanded}}
Line 646:
[[Category:Data compression]]
[[Category:Image compression]]
[[Category:Indian inventions]]
[[Category:H.26x]]
[[Category:JPEG]]