Content deleted Content added
rm refspam, see talk as well |
Stability Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 131:
While the FDTD technique computes electromagnetic fields within a compact spatial region, scattered and/or radiated far fields can be obtained via near-to-far-field transformations.<ref name="umashankar82" />
==== Stability ====
Due to the linearity of the FDTD method, the region of stability of the FDTD method may be determined by [[Von Neumann stability analysis]]. This method assumes that electric and magnetic fields are proportional to a monochromatic complex exponential. After a single time-step, the magnitude amplitude of the stable fields need to remain the same or less. This leads to the [[Courant–Friedrichs–Lewy condition]], which describes the relationship of the FDTD parameters to ensure stability.<ref name="taflove05"/>
=== Strengths of FDTD modeling ===
Line 175 ⟶ 178:
# Parallel-processing computer architectures have come to dominate supercomputing. FDTD scales with high efficiency on parallel-processing CPU-based computers, and extremely well on recently developed GPU-based accelerator technology.<ref name="taflove05" />
# Computer visualization capabilities are increasing rapidly. While this trend positively influences all numerical techniques, it is of particular advantage to FDTD methods, which generate time-marched arrays of field quantities suitable for use in color videos to illustrate the field dynamics.<ref name="taflove05" />
# Anisotropy is treated naturally by the FDTD method. Yee cells, having components in each Cartesian direction, can be easily configured with anisotropic characteristics.<ref name="taflove05"/>
Taflove has argued that these factors combine to suggest that FDTD will remain one of the dominant computational electrodynamics techniques (as well as potentially other [[multi-physics|multiphysics]] problems).<ref name="taflove05" />
==See also==
Line 1,028 ⟶ 1,031:
* [http://ab-initio.mit.edu/meep/ Meep] ([[Massachusetts Institute of Technology|MIT]], 2D/3D/cylindrical parallel FDTD)
* [http://freshmeat.net/projects/radarfdtd/ (Geo-) Radar FDTD]
* [
* [
* [https://archive.today/20121217222254/http://cs.tu-berlin.de/~peutetre/sfdtd/ FDTD code in Fortran 90]
* [http://code.google.com/p/emwave2d/ FDTD code in C for 2D EM Wave simulation]
|