Integer factorization: Difference between revisions

Content deleted Content added
WP:DASH
Bender the Bot (talk | contribs)
m External links: HTTP to HTTPS for SourceForge
 
(2 intermediate revisions by 2 users not shown)
Line 7:
To factorize a small integer {{mvar|n}} using mental or pen-and-paper arithmetic, the simplest method is [[trial division]]: checking if the number is divisible by prime numbers {{math|2}}, {{math|3}}, {{math|5}}, and so on, up to the [[square root]] of {{mvar|n}}. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves [[primality test|testing whether each factor is prime]] each time a factor is found.
 
When the numbers are sufficiently large, no efficient non-[[quantum computer|quantum]] integer factorization [[algorithm]] is known. However, it has not been proven that such an algorithm does not exist. The presumed [[Computational hardness assumption|difficulty]] of this problem is important for the algorithms used in [[cryptography]] such as [[RSA (cryptosystem)|RSA public-key encryption]] and the [[Digital Signature Algorithm|RSA digital signature]].<ref>{{Citation |last=Lenstra |first=Arjen K. |title=Integer Factoring |date=2011 |url=http://link.springer.com/10.1007/978-1-4419-5906-5_455 |encyclopedia=Encyclopedia of Cryptography and Security |pages=611–618 |editor-last=van Tilborg |editor-first=Henk C. A. |place=Boston, MA |publisher=Springer US |language=en |doi=10.1007/978-1-4419-5906-5_455 |isbn=978-1-4419-5905-8 |access-date=2022-06-22 |editor2-last=Jajodia |editor2-first=Sushil }}</ref> Many areas of [[mathematics]] and [[computer science]] have been brought to bear on this problem, including [[elliptic curve]]s, [[algebraic number theory]], and quantum computing.
 
Not all numbers of a given length are equally hard to factor. The hardest instances of these problems (for currently known techniques) are [[semiprime]]s, the product of two prime numbers. When they are both large, for instance more than two thousand [[bit]]s long, randomly chosen, and about the same size (but not too close, for example, to avoid efficient factorization by [[Fermat's factorization method]]), even the fastest prime factorization algorithms on the fastest classical computers can take enough time to make the search impractical; that is, as the number of digits of the integer being factored increases, the number of operations required to perform the factorization on any classical computer increases drastically.
Line 190:
 
== External links ==
* [httphttps://sourceforge.net/projects/msieve/ msieve] – SIQS and NFS – has helped complete some of the largest public factorizations known
* Richard P. Brent, "Recent Progress and Prospects for Integer Factorisation Algorithms", ''Computing and Combinatorics"'', 2000, pp.&nbsp;3–22. [http://citeseer.ist.psu.edu/327036.html download]
* [[Manindra Agrawal]], Neeraj Kayal, Nitin Saxena, "PRIMES is in P." Annals of Mathematics 160(2): 781–793 (2004). [http://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf August 2005 version PDF]