Conjugate transpose: Difference between revisions

Content deleted Content added
linkified real
Owen Reich (talk | contribs)
Link suggestions feature: 2 links added.
 
(29 intermediate revisions by 21 users not shown)
Line 2:
{{redirect|Adjoint matrix|the transpose of cofactor|Adjugate matrix}}
 
In [[mathematics]], the '''conjugate transpose''', (oralso known as the '''Hermitian transpose'''), of an ''<math>m''-by-'' \times n''</math> [[Complex number|complex]] [[matrix (mathematics)|matrix]] <math>\boldsymbolmathbf{A}</math> withis [[complexan number|complex]]<math>n entries\times is the ''n''-by-''m''</math> matrix obtained fromby [[transpose|transposing]] <math>\boldsymbolmathbf{A}</math> by taking the [[transpose]] and then taking theapplying [[complex conjugate|complex conjugation]] ofto each entry (the complex conjugate of <math>a+ib</math> being <math>a-ib</math>, for real numbers <math>a</math> and <math>b</math>). ItThere isare oftenseveral notations, denotedsuch as <math>\boldsymbolmathbf{A}^\mathrm{H}</math> or <math>\boldsymbolmathbf{A}^*</math>.,<ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=Conjugate Transpose|url=https://mathworld.wolfram.com/ConjugateTranspose.html|access-date=2020-09-08|website=mathworld.wolfram.com|language=en}}</ref> <ref name=":2"math>\mathbf{{Cite web|title=conjugate transpose|url=https://planetmath.org/ConjugateTranspose|access-date=2020-09-08|website=planetmath.org}A}'</math>,<ref>
H. W. Turnbull, A. C. Aitken,
"An Introduction to the Theory of Canonical Matrices,"
1932.
</ref> or (often in physics) <math>\mathbf{A}^{\dagger}</math>.
 
For [[Real number|real]] matrices, the conjugate transpose is just the transpose, <math>\boldsymbolmathbf{A}^\mathrm{H} = \boldsymbolmathbf{A}^\mathsfoperatorname{T}</math>.
 
==Definition==
The conjugate transpose of an <math>m \times n</math> matrix <math>\boldsymbolmathbf{A}</math> is formally defined by
{{Equation box 1
|indent =
|title=
|equation = {{NumBlk||<math>\left(\boldsymbolmathbf{A}^\mathrm{H}\right)_{ij} = \overline{\boldsymbolmathbf{A}_{ji}}</math>|{{EquationRef|Eq.1}}}}
|cellpadding= 6
|border
Line 17 ⟶ 21:
|background colour=#F5FFFA}}
 
where the subscript <math>ij</math> denotes the <math>(i,j)</math>-th entry (matrix element), for <math>1 \le i \le n</math> and <math>1 \le j \le m</math>, and the overbar denotes a scalar complex conjugate.
 
This definition can also be written as<ref name=":2" />
:<math>\boldsymbolmathbf{A}^\mathrm{H} = \left(\overline{\boldsymbolmathbf{A}}\right)^\mathsfoperatorname{T} = \overline{\boldsymbolmathbf{A}^\mathsfoperatorname{T}}</math>
 
where <math>\boldsymbolmathbf{A}^\mathsfoperatorname{T}</math> denotes the transpose and <math>\overline{\boldsymbolmathbf{A}}</math> denotes the matrix with complex conjugated entries.
 
Other names for the conjugate transpose of a matrix are '''Hermitian conjugatetranspose''', '''bedaggeredHermitian matrixconjugate''', '''adjoint matrix''' or '''transjugate'''. The conjugate transpose of a matrix <math>\boldsymbolmathbf{A}</math> can be denoted by any of these symbols:
* <math>\boldsymbolmathbf{A}^*</math>, commonly used in [[linear algebra]]<ref name=":2" />
* <math>\boldsymbolmathbf{A}^\mathrm{H}</math>, commonly used in linear algebra
* <math>\boldsymbolmathbf{A}^\dagger</math> (sometimes pronounced as ''A [[dagger (typography)|dagger]]''), commonly used in [[quantum mechanics]]
* <math>\boldsymbolmathbf{A}^+</math>, although this symbol is more commonly used for the [[Moore–Penrose pseudoinverse]]
 
In some contexts, <math>\boldsymbolmathbf{A}^*</math> denotes the matrix with only complex conjugated entries and no transposition.
 
==Example==
Suppose we want to calculate the conjugate transpose of the following matrix <math>\boldsymbolmathbf{A}</math>.
:<math>\boldsymbolmathbf{A} = \begin{bmatrix} 1 & -2 - i & 5 \\ 1 + i & i & 4-2i \end{bmatrix}</math>
We first transpose the matrix:
:<math>\boldsymbolmathbf{A}^\mathsfoperatorname{T} = \begin{bmatrix} 1 & 1 + i \\ -2 - i & i \\ 5 & 4-2i\end{bmatrix}</math>
Then we conjugate every entry of the matrix:
:<math>\boldsymbolmathbf{A}^\mathrm{H} = \begin{bmatrix} 1 & 1 - i \\ -2 + i & -i \\ 5 & 4+2i\end{bmatrix}</math>
 
==Basic remarks==
A square matrix <math>\boldsymbolmathbf{A}</math> with entries <math>a_{ij}</math> is called
* [[hermitian matrix|Hermitian]] or [[self-adjoint_operator|self-adjoint]] if <math>\boldsymbolmathbf{A}=\boldsymbolmathbf{A}^\mathrm{H}</math>; i.e., <math>a_{ij} = \overline{a_{ji}}</math>.
* [[skew-Hermitian matrix|Skew Hermitian]] or antihermitian if <math>\boldsymbolmathbf{A}=-\boldsymbolmathbf{A}^\mathrm{H}</math>; i.e., <math>a_{ij} = -\overline{a_{ji}}</math>.
* [[normal matrix|Normal]] if <math>\boldsymbolmathbf{A}^\mathrm{H} \boldsymbolmathbf{A} = \boldsymbolmathbf{A} \boldsymbolmathbf{A}^\mathrm{H}</math>.
* [[Unitary matrix|Unitary]] if <math>\boldsymbolmathbf{A}^\mathrm{H} = \boldsymbolmathbf{A}^{-1}</math>, equivalently <math>\boldsymbolmathbf{A}\boldsymbolmathbf{A}^\mathrm{H} = \boldsymbol{I}</math>, equivalently <math>\boldsymbolmathbf{A}^\mathrm{H}\boldsymbolmathbf{A} = \boldsymbol{I}</math>.
 
Even if <math>\boldsymbolmathbf{A}</math> is not square, the two matrices <math>\boldsymbolmathbf{A}^\mathrm{H}\boldsymbolmathbf{A}</math> and <math>\boldsymbolmathbf{A}\boldsymbolmathbf{A}^\mathrm{H}</math> are both Hermitian and in fact [[positive-definite matrix|positive semi-definite matrices]].
 
The conjugate transpose "adjoint" matrix <math>\boldsymbolmathbf{A}^\mathrm{H}</math> should not be confused with the [[adjugate]], <math>\operatorname{adj}(\boldsymbolmathbf{A})</math>, which is also sometimes called ''adjoint''.
 
The conjugate transpose ofcan abe matrixmotivated <math>\boldsymbol{A}</math>by withnoting [[realthat number|real]]complex entriesnumbers reducescan tobe theusefully [[transpose]]represented ofby <math>2 \boldsymbol{A}times 2</math>, asreal thematrices, conjugateobeying of[[matrix a real number is theaddition]] numberand itself.multiplication:
:<math display="block">a + ib \equiv \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.</math>
 
That is, denoting each ''complex'' number ''<math>z''</math> by the ''real'' <math>2& \times; 2</math> matrix of the linear transformation on the [[Argand diagram]] (viewed as the ''real'' vector space <math>\mathbb{R}^2</math>), affected by complex ''<math>z</math>''-multiplication on <math>\mathbb{C}</math>.
== Motivation ==
The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2×2 real matrices, obeying matrix addition and multiplication:
:<math>a + ib \equiv \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.</math>
 
Thus, an ''<math>m''-by-'' \times n''</math> matrix of complex numbers could be well represented by a 2''m''-by-2''n''<math>2m \times 2n</math> matrix of real numbers. The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as ''an <math>n''-by-'' \times m''</math> matrix made up of complex numbers.
That is, denoting each ''complex'' number ''z'' by the ''real'' 2&times;2 matrix of the linear transformation on the [[Argand diagram]] (viewed as the ''real'' vector space <math>\mathbb{R}^2</math>), affected by complex ''z''-multiplication on <math>\mathbb{C}</math>.
 
For an explanation of the notation used here, we begin by representing complex numbers <math>e^{i\theta}</math> as the [[rotation matrix]], that is,
Thus, an ''m''-by-''n'' matrix of complex numbers could be well represented by a 2''m''-by-2''n'' matrix of real numbers. The conjugate transpose therefore arises very naturally as the result of simply transposing such a matrix—when viewed back again as ''n''-by-''m'' matrix made up of complex numbers.
<math display="block">
e^{i\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
</math>
Since <math>e^{i\theta} = \cos \theta + i \sin \theta</math>, we are led to the matrix representations of the unit numbers as
<math display="block">
1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
</math>
 
A general complex number <math>z=x+iy</math> is then represented as <math>
==Properties of the conjugate transpose==
z = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}.
* <math>(\boldsymbol{A} + \boldsymbol{B})^\mathrm{H} = \boldsymbol{A}^\mathrm{H} + \boldsymbol{B}^\mathrm{H}</math> for any two matrices <math>\boldsymbol{A}</math> and <math>\boldsymbol{B}</math> of the same dimensions.
</math> The [[complex conjugate]] operation (that sends <math>a + bi</math> to <math>a - bi</math> for real <math>a, b</math>) is encoded as the matrix transpose.<ref>{{cite book |last=Chasnov |first=Jeffrey R. |url=https://math.libretexts.org/Bookshelves/Differential_Equations/Applied_Linear_Algebra_and_Differential_Equations_(Chasnov)/02%3A_II._Linear_Algebra/01%3A_Matrices/1.06%3A_Matrix_Representation_of_Complex_Numbers |title=Applied Linear Algebra and Differential Equations |date=4 February 2022 |publisher=LibreTexts |contribution=1.6: Matrix Representation of Complex Numbers}}</ref>
* <math>(z\boldsymbol{A})^\mathrm{H} = \overline{z} \boldsymbol{A}^\mathrm{H}</math> for any complex number <math>z</math> and any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math>.
 
* <math>(\boldsymbol{A}\boldsymbol{B})^\mathrm{H} = \boldsymbol{B}^\mathrm{H} \boldsymbol{A}^\mathrm{H}</math> for any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math> and any ''n''-by-''p'' matrix <math>\boldsymbol{B}</math>. Note that the order of the factors is reversed.<ref name=":1" />
==Properties==
* <math>\left(\boldsymbol{A}^\mathrm{H}\right)^\mathrm{H} = \boldsymbol{A}</math> for any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math>, i.e. Hermitian transposition is an [[Involution (mathematics)|involution]].
* If <math>(\boldsymbolmathbf{A}</math> is+ a square matrix, then <math>\det\left(\boldsymbol{AB})^\mathrm{H}\right) = \overlinemathbf{A}^\det\left(mathrm{H} + \boldsymbol{AB}^\right)mathrm{H}</math> wherefor any two matrices <math>\operatornamemathbf{det}(A)}</math> denotes the [[determinant]] ofand <math>\boldsymbol{AB}</math> of the same dimensions.
* If <math>\boldsymbol{A}</math> is a square matrix, then <math>\operatorname{tr}\left(z\boldsymbolmathbf{A})^\mathrm{H}\right) = \overline{z} \operatornamemathbf{trA}(^\boldsymbolmathrm{A})H}</math> wherefor any complex number <math>\operatorname{tr}(A)z</math> denotesand theany [[trace<math>m (matrix)|trace]]\times ofn</math> matrix <math>\boldsymbolmathbf{A}</math>.
* <math>(\boldsymbolmathbf{A}</math>\boldsymbol{B})^\mathrm{H} is [[invertible= matrix|invertible]] [[if and only if]] <math>\boldsymbol{B}^\mathrm{H} \mathbf{A}^\mathrm{H}</math> isfor invertible,any and<math>m in\times thatn</math> casematrix <math>\left(\boldsymbolmathbf{A}^</math> and any <math>n \mathrm{H}\right)^{-1}times =p</math> \left(matrix <math>\boldsymbol{A}^{-1}\right)^{\mathrm{H}B}</math>. Note that the order of the factors is reversed.<ref name=":1" />
* The [[eigenvalue]]s of <math>\boldsymbolleft(\mathbf{A}^\mathrm{H}\right)^\mathrm{H} = \mathbf{A}</math> arefor theany complex<math>m conjugates\times ofn</math> the [[eigenvalue]]s ofmatrix <math>\boldsymbolmathbf{A}</math>, i.e. Hermitian transposition is an [[Involution (mathematics)|involution]].
* If <math>\left\langle \boldsymbolmathbf{A}</math> xis a square matrix,y then <math>\right\rangle_m = det\left(\langle x, \boldsymbolmathbf{A}^\mathrm{H} y\right\rangle_n) </math>= for any ''m''-by-''n'' matrix <math>\boldsymboloverline{A}</math>, any vector in <math>x \in det\left(\mathbbmathbf{CA}\right)}^n </math> and any vectorwhere <math>y \in \mathbboperatorname{Cdet}^m </math>. Here, <math>\langle\cdot,\cdot\rangle_m(A)</math> denotes the standard complex [[inner productdeterminant]] onof <math> \mathbbmathbf{CA}^m </math>, and similarly for <math>\langle\cdot,\cdot\rangle_n</math>.
* If <math>\mathbf{A}</math> is a square matrix, then <math>\operatorname{tr}\left(\mathbf{A}^\mathrm{H}\right) = \overline{\operatorname{tr}(\mathbf{A})}</math> where <math>\operatorname{tr}(A)</math> denotes the [[trace (matrix)|trace]] of <math>\mathbf{A}</math>.
* <math>\mathbf{A}</math> is [[invertible matrix|invertible]] [[if and only if]] <math>\mathbf{A}^\mathrm{H}</math> is invertible, and in that case <math>\left(\mathbf{A}^\mathrm{H}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\mathrm{H}}</math>.
* The [[eigenvalue]]s of <math>\mathbf{A}^\mathrm{H}</math> are the complex conjugates of the [[eigenvalue]]s of <math>\mathbf{A}</math>.
* <math>\left\langle \mathbf{A} x,y \right\rangle_m = \left\langle x, \mathbf{A}^\mathrm{H} y\right\rangle_n </math> for any <math>m \times n</math> matrix <math>\mathbf{A}</math>, any vector in <math>x \in \mathbb{C}^n </math> and any vector <math>y \in \mathbb{C}^m </math>. Here, <math>\langle\cdot,\cdot\rangle_m</math> denotes the standard complex [[inner product]] on <math> \mathbb{C}^m </math>, and similarly for <math>\langle\cdot,\cdot\rangle_n</math>.
 
==Generalizations==
The last property given above shows that if one views <math>\boldsymbolmathbf{A}</math> as a [[linear transformation]] from [[Hilbert space]] <math> \mathbb{C}^n </math> to <math> \mathbb{C}^m ,</math> then the matrix <math>\boldsymbolmathbf{A}^\mathrm{H}</math> corresponds to the [[Hermitian adjoint|adjoint operator]] of <math>\boldsymbolmathbf A</math>. The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis.
 
Another generalization is available: suppose <math>A</math> is a linear map from a complex [[vector space]] <math>V</math> to another, <math>W</math>, then the [[complex conjugate linear map]] as well as the [[transpose of a linear map|transposed linear map]] are defined, and we may thus take the conjugate transpose of <math>A</math> to be the complex conjugate of the transpose of <math>A</math>. It maps the conjugate [[dual space|dual]] of <math>W</math> to the conjugate dual of <math>V</math>.
Line 88 ⟶ 102:
 
[[Category:Linear algebra]]
[[Category:Matrices (mathematics)]]