Content deleted Content added
No edit summary |
Owen Reich (talk | contribs) Link suggestions feature: 2 links added. |
||
(13 intermediate revisions by 10 users not shown) | |||
Line 21:
|background colour=#F5FFFA}}
where the subscript <math>ij</math> denotes the <math>(i,j)</math>-th entry (matrix element), for <math>1 \le i \le n</math> and <math>1 \le j \le m</math>, and the overbar denotes a scalar complex conjugate.
This definition can also be written as
Line 28:
where <math>\mathbf{A}^\operatorname{T}</math> denotes the transpose and <math>\overline{\mathbf{A}}</math> denotes the matrix with complex conjugated entries.
Other names for the conjugate transpose of a matrix are '''Hermitian transpose''', '''Hermitian conjugate''', '''adjoint matrix''' or '''transjugate'''. The conjugate transpose of a matrix <math>\mathbf{A}</math> can be denoted by any of these symbols:
* <math>\mathbf{A}^*</math>, commonly used in [[linear algebra]]
* <math>\mathbf{A}^\mathrm{H}</math>, commonly used in linear algebra
Line 55:
The conjugate transpose "adjoint" matrix <math>\mathbf{A}^\mathrm{H}</math> should not be confused with the [[adjugate]], <math>\operatorname{adj}(\mathbf{A})</math>, which is also sometimes called ''adjoint''.
The conjugate transpose
▲:<math>a + ib \equiv \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.</math>
That is, denoting each ''complex'' number <math>z</math> by the ''real'' <math>2 \times 2</math> matrix of the linear transformation on the [[Argand diagram]] (viewed as the ''real'' vector space <math>\mathbb{R}^2</math>), affected by complex ''<math>z</math>''-multiplication on <math>\mathbb{C}</math>.
Line 64 ⟶ 62:
Thus, an <math>m \times n</math> matrix of complex numbers could be well represented by a <math>2m \times 2n</math> matrix of real numbers. The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an <math>n \times m</math> matrix made up of complex numbers.
For an explanation of the notation used here, we begin by representing complex numbers <math>e^{i\theta}</math> as the [[rotation matrix]], that is,▼
<math display="block">
▲For an explanation of the notation used here, we begin by representing complex numbers <math>e^{i\theta}</math> as the rotation matrix, that is,
e^{i\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\
▲e^{i\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
</math>
Since <math>e^{i\theta} = \cos \theta + i \sin \theta</math>, we are led to the matrix representations of the unit numbers as▼
<math display="block">
1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & -1 \\
▲we are led to the matrix representations of the unit numbers as
▲1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
A general complex number <math>z=x+iy</math> is then represented as▼
z = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}.▼
</math>
▲A general complex number <math>z=x+iy</math> is then represented as <math>
</math> The [[complex conjugate]] operation (that sends <math>a + bi</math> to <math>a - bi</math> for real <math>a, b</math>) is encoded as the matrix transpose.<ref>{{cite book |last=Chasnov |first=Jeffrey R. |url=https://math.libretexts.org/Bookshelves/Differential_Equations/Applied_Linear_Algebra_and_Differential_Equations_(Chasnov)/02%3A_II._Linear_Algebra/01%3A_Matrices/1.06%3A_Matrix_Representation_of_Complex_Numbers |title=Applied Linear Algebra and Differential Equations |date=4 February 2022 |publisher=LibreTexts |contribution=1.6: Matrix Representation of Complex Numbers}}</ref>
==Properties
* <math>(\mathbf{A} + \boldsymbol{B})^\mathrm{H} = \mathbf{A}^\mathrm{H} + \boldsymbol{B}^\mathrm{H}</math> for any two matrices <math>\mathbf{A}</math> and <math>\boldsymbol{B}</math> of the same dimensions.
* <math>(z\mathbf{A})^\mathrm{H} = \overline{z} \mathbf{A}^\mathrm{H}</math> for any complex number <math>z</math> and any <math>m \times n</math> matrix <math>\mathbf{A}</math>.
Line 115 ⟶ 102:
[[Category:Linear algebra]]
[[Category:Matrices (mathematics)]]
|