Content deleted Content added
img |
|||
(13 intermediate revisions by 5 users not shown) | |||
Line 10:
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node_1|3|node|6|node|3|node}}<BR>{{CDD|node_h1|6|node|3|node|6|node}} ↔ {{CDD|branch_10ru|split2|node|6|node}}<BR>{{CDD|node_h1|6|node|split1|branch}} ↔ {{CDD|node_1|splitsplit1|branch4|splitsplit2|node}} ↔ {{CDD|branch_10ru|split2|node|6|node_h0}}
|-
|bgcolor=#e7dcc3|Cells||[[Triangular tiling|{3,6}]] [[File:Uniform tiling 63-t2.
|-
|bgcolor=#e7dcc3|Faces||[[triangle]] {3}
Line 16:
|bgcolor=#e7dcc3|[[Edge figure]]||[[triangle]] {3}
|-
|bgcolor=#e7dcc3|[[Vertex figure]]||[[File:Uniform tiling 63-t0.
|-
|bgcolor=#e7dcc3|[[Dual polytope|Dual]]||[[Self-dual polytope|Self-dual]]
Line 27:
{{Honeycomb}}
== Symmetry ==
[[File:Hyperbolic subgroup tree 363.png|left|thumb|Subgroups of [3,6,3] and [6,3,6]]]
Line 32 ⟶ 33:
It has two lower reflective symmetry constructions, as an [[Alternation (geometry)|alternated]] [[order-6 hexagonal tiling honeycomb]], {{CDD|node_h1|6|node|3|node|6|node}} ↔ {{CDD|branch_10ru|split2|node|6|node}}, and as {{CDD|node_1|splitsplit1|branch4|splitsplit2|node}} from {{CDD|node_1|3|node|6|node_g|3sg|node_g}}, which alternates 3 types (colors) of triangular tilings around every edge. In [[Coxeter notation]], the removal of the 3rd and 4th mirrors, [3,6,3<sup>*</sup>] creates a new [[Coxeter group]] [3<sup>[3,3]</sup>], {{CDD|node|splitsplit1|branch4|splitsplit2|node}}, subgroup index 6. The fundamental ___domain is 6 times larger. By Coxeter diagram there are 3 copies of the first original mirror in the new fundamental ___domain: {{CDD|node_c2|3|node_c1|6|node|3|node}} ↔ {{CDD|node_c2|splitsplit1|branch4_c1|splitsplit2|node_c1}}.
{{
== Related Tilings ==
Line 61 ⟶ 62:
|bgcolor=#e7dcc3|[[Coxeter diagram]]||{{CDD|node|3|node_1|6|node|3|node}}<BR>{{CDD|node_h1|6|node|3|node_1|6|node}} ↔ {{CDD|branch_10ru|split2|node_1|6|node}}<BR>{{CDD|node|splitsplit1|branch4_11|splitsplit2|node_1}} ↔ {{CDD|branch_10ru|split2|node_1|6|node_h0}} ↔ {{CDD|node|3|node_1|6|node_g|3sg|node_g}}
|-
|bgcolor=#e7dcc3|Cells||[[trihexagonal tiling|r{3,6}]] [[File:Uniform polyhedron-63-t1.
|-
|bgcolor=#e7dcc3|Faces||[[triangle]] {3}<BR>[[hexagon]] {6}
Line 77 ⟶ 78:
[[File:H3 363 boundary 0100.png|480px]]
{{
=== Truncated triangular tiling honeycomb===
Line 105 ⟶ 106:
[[File:H3 363-1100.png|480px]]
{{
=== Bitruncated triangular tiling honeycomb===
Line 132 ⟶ 133:
[[File:H3 363-0110.png|480px]]
{{
=== Cantellated triangular tiling honeycomb===
Line 146 ⟶ 147:
|bgcolor=#e7dcc3|[[Coxeter diagram]]||{{CDD|node_1|3|node|6|node_1|3|node}}<BR>{{CDD|node_h|3|node_h|6|node_1|3|node}}
|-
|bgcolor=#e7dcc3|Cells||[[rhombitrihexagonal tiling|rr{6,3}]] [[File:Uniform polyhedron-63-t02.png|40px]]<BR>[[trihexagonal tiling|r{6,3}]] [[File:Uniform polyhedron-63-t1.
|-
|bgcolor=#e7dcc3|Faces||[[triangle]] {3}<BR>[[square]] {4}<BR>[[hexagon]] {6}
Line 162 ⟶ 163:
[[File:H3 363-1010.png|480px]]
{{
=== Cantitruncated triangular tiling honeycomb===
Line 189 ⟶ 190:
[[File:H3 363-1110.png|480px]]
{{
=== Runcinated triangular tiling honeycomb===
Line 203 ⟶ 204:
|bgcolor=#e7dcc3|[[Coxeter diagram]]||{{CDD|node_1|3|node|6|node|3|node_1}}
|-
|bgcolor=#e7dcc3|Cells||[[triangular tiling|{3,6}]] [[File:Uniform polyhedron-63-t2.
|-
|bgcolor=#e7dcc3|Faces||[[triangle]] {3}<BR>[[square]] {4}
Line 216 ⟶ 217:
[[File:H3 363-1001.png|480px]]
{{
=== Runcitruncated triangular tiling honeycomb===
Line 246 ⟶ 247:
[[File:H3 363-1101.png|480px]]
{{
=== Omnitruncated triangular tiling honeycomb===
Line 273 ⟶ 274:
[[File:H3 363-1111.png|480px]]
{{
=== Runcisnub triangular tiling honeycomb===
Line 287 ⟶ 288:
|bgcolor=#e7dcc3|[[Coxeter diagram]]||{{CDD|node_h|3|node_h|6|node|3|node_1}}
|-
|bgcolor=#e7dcc3|Cells|||[[Trihexagonal tiling|r{6,3}]] [[File:Uniform tiling 333-t02.
|-
|bgcolor=#e7dcc3|Faces||[[triangle]] {3}<BR>[[square]] {4}<BR>[[hexagon]] {6}
Line 299 ⟶ 300:
The '''runcisnub triangular tiling honeycomb''', {{CDD|node_h|3|node_h|6|node|3|node_1}}, has [[trihexagonal tiling]], [[triangular tiling]], [[triangular prism]], and [[triangular cupola]] cells. It is [[vertex-transitive]], but not uniform, since it contains [[Johnson solid]] [[triangular cupola]] cells.
{{
== See also ==
* [[Convex uniform honeycombs in hyperbolic space]]
* [[
* [[Paracompact uniform honeycomb]]s
Line 309 ⟶ 310:
*[[H.S.M. Coxeter|Coxeter]], ''[[Regular Polytopes (book)|Regular Polytopes]]'', 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
* ''The Beauty of Geometry: Twelve Essays'' (1999), Dover Publications, {{LCCN|99035678}}, {{isbn|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
* [[Jeffrey Weeks (mathematician)|Jeffrey R. Weeks]] ''The Shape of Space, 2nd edition'' {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
* [[Norman Johnson (mathematician)|Norman Johnson]] ''Uniform Polytopes'', Manuscript
** [[Norman Johnson (mathematician)|N.W. Johnson]]: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
** N.W. Johnson: ''Geometries and Transformations'', (2018) Chapter 13: Hyperbolic Coxeter groups
[[Category:
[[Category:Self-dual tilings]]
[[Category:Triangular tilings]]
|